Refine Your Search

Topic

Search Results

Author:
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Mixture Formation and Corresponding Knock Limits in a Hydrogen Direct Injection Engine Using Different Jet Forming Caps

2024-04-09
2024-01-2113
The need for carbon-neutral transportation solutions has never been more pronounced. With the continually expanding volume of goods in transit, innovative and dependable powertrain concepts for freight transport are imperative. The green hydrogen-powered internal combustion engine presents an appealing option for integrating a reliable, non-fossil fuel powertrain into commercial vehicles. This study focuses on the adaptation of a single-cylinder diesel engine with a displacement of 2116 cm3 to facilitate hydrogen combustion. The engine, characterized by low levels of swirl and tumble, underwent modifications, including the integration of a conventional central spark plug, a custom-designed piston featuring a reduced compression ratio of 9.5, and a low-pressure hydrogen direct injection system. Operating the injection system at 25 bar hydrogen pressure, the resulting jet profiles were varied by employing jet forming caps affixed directly to the injector nozzle.
Journal Article

Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

2022-01-09
2022-32-0027
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine. A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
Technical Paper

Influence of the MeFo and DMC Content in the Fuel on the Gasoline DI Spray Characteristics with the Focus on Droplet Speed and Size

2021-09-21
2021-01-1191
E-fuels are proven to be a major contributing factor to reduce CO2 emissions in internal combustion engines. In gasoline engines, C1 oxygenate are seen as critical to reach CO2 and emission reduction goals. Their properties affect the fuel injection characteristics and thus the fuel mixture formation and combustion emissions. To exploit the full potential of e-fuels, the detailed knowledge of their spray characteristic is necessary. The correlation between the fuel content of C1 oxygenates and particulate emissions do not appear to be linear. To understand this correlation, the spray characteristics have to be investigated in detail. The reduced stoichiometric air requirement leads to an increase of the injected fuel mass, which has to evaporate. This can lead to a changed fuel film interaction within the combustion chamber walls and therefore a change of particle formation.
Technical Paper

Modelling of Engine Cooling System with a New Modelling Approach Based on Dynamic Neural Network

2021-04-06
2021-01-0203
Thermal management has always played a significant role in reducing emissions and improving the fuel efficiency of the internal combustion engines (ICEs). With a momentous influence on the thermal behavior of the engines, the cooling system has a considerable impact on ICE performance. In this scenario, a method based on artificial neural network (ANN) of the cooling system was proposed in this work. Specific modeling methods were adopted for the various operating conditions and flow circuits of the cooling system. To describe these varied dynamic characteristics, four ANN sub-models were established to simulate the system at different temperature stages. As a closed-loop system, the temperature of the cooling system can be regarded as a result of all the experienced operating points. Therefore, integral parameters describing the trajectory of the system were selected as the input of the ANNs.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Dualhybrid-Cold Start Performance Study for a HEV with Two Combustion Engines

2021-04-06
2021-01-0396
The fuel economic and emission performance of an innovative electric hybrid vehicle (HEV), Dualhybrid, with two internal combustion engines (ICEs) under cold start conditions was studied. Sub-models including powertrain, lubrication and cooling system as well as exhaust system were built and integrated into the models of Dualhybrid and two other reference models: Base model and Fullhybrid model. Coupled lubrication and the exhaust systems of the two ICEs are proposed. The effect of the combination of oil heating and electric heating on the fuel consumption of Dualhybrid was investigated. The results show that the coupled lubricating system of Dualhybrid is beneficial to improve the fuel economy in cold start. The method of hybrid heating can provide a sufficient heating power of the cabin in the initial stage of cold start without declining the fuel economic performance significantly.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
Technical Paper

Dualhybrid - Proof of a Concept for an HEV with Two Combustion Engines

2020-04-14
2020-01-1019
Due to the prevalent fuel economy, research on electric hybrid vehicles (HEVs) has attracted recently widespread attention. However, most researches were focused on electrification, neglecting the crucial role of internal combustion engines (ICEs) in reducing fuel consumption. Holding the opinion that ICEs can contribute more in developing fuel economic vehicles, we present in this paper a new HEV topology with two ICEs - Dualhybrid. Two separate traction units, conventional drivetrain with ICE1at front axle and electric hybrid drivetrain with ICE2+battery at rear axle constitute the powertrain of this new HEV concept. One dimensional simulation with sub-models built upon different modelling methods is implemented. Energy management of Dualhybrid is identified with a rule-based control strategy. Base and Fullhybrid model were built as references and a comparative simulation among the three models was conducted.
Technical Paper

Impact of the Injection Strategy on Soot Reactivity and Particle Properties of a GDI Engine

2020-04-14
2020-01-0392
The gradual global tightening of emission legislation for particulate matter emissions requires the development of new gasoline engine exhaust aftertreatment systems. For this reason, the development of gasoline direct injection engines aims at the reduction of particulate emissions by application of a Gasoline Particulate Filter (GPF). The regeneration temperature of GPF depend on soot reactivity towards oxidation and therefore on particle properties. In this study, the soot reactivity is correlated with nanostructural characteristics of primary gasoline particles as a function of specific engine injection parameters. The investigations on particle emissions were carried out on a turbocharged 4-cylinder GDI-engine that allows the variation of injection parameters. The emitted engine soot particles have been in-situ characterized towards their number and size distribution using an engine exhaust particle sizer (EEPS).
Technical Paper

Development of Valve Train Configurations Optimized for Cold Start and Their Effect on Diesel Soot Emission

2019-09-09
2019-24-0161
The continuous pursuit of more efficient diesel engines and the stricter emission regulations with the introduction of the Real Driving Emissions test (RDE) necessitate further investigations of heating strategies and their suitability in terms of series production. Under these circumstances heating strategies of a variable valve train for a single-cylinder research diesel engine have been first simulated and then experimentally tested at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology (KIT). By combining statistical experimental design (DoE) and 1-D gas exchange simulations, empirical DoE models for the design of suitable camshaft configurations have been established. After having performed a potential assessment, the most favorable configurations were manufactured and subsequently tested.
Technical Paper

Comparison of Different Particle Measurement Techniques at a Heavy-Duty Diesel Engine Test Bed

2019-09-09
2019-24-0158
The particle size distribution (PSD) of submicron exhaust engine-out soot, is typically determined using a method based on the electrical mobility is used. This measurement procedure is subjected to uncertainty mainly due to inaccurate dilution of the sampled aerosol, unknown flow conditions at the probe inlet and the limited measurement accuracy of the device itself. In order to determine the measurement uncertainty, two different aerosol spectrometers, a TSI EEPS 3090 and a Cambustion DMS500 were installed and operated simultaneously at a single-cylinder heavy-duty diesel engine at the Institute of Internal Combustion Engines of the Karlsruhe Institute of Technology (KIT).The engine was operated at various operating points to evaluate the ability of the spectrometers to correctly determine the PSD and the total particle number concentration (TPNC) at different boundary conditions.
Technical Paper

Possibilities of Wall Heat Transfer Measurements at a Supercharged Euro VI Heavy-Duty Diesel Engine with High EGR-Rates, an In-Cylinder Peak Pressure of 250 Bar and an Injection Pressure up to 2500 Bar

2019-09-09
2019-24-0171
A raise of efficiency is the strongest selling point concerning the total cost of ownership (TCO), especially for commercial vehicles (CV). Accompanied by legislations, with contradictive development demands, satisfying solutions have to be found. The analysis of energy losses in modern engines shows three influencing parameters. Wall heat transfer (WHT) losses are awarded with the highest optimization potential. Critical for the occurrence of these losses is the WHT, which can be described by representing coefficients. To reduce WHT accompanying losses a decrease of energy transfer between combustion gas and combustion chamber wall is necessary. A measurement of heat fluxes is necessary to determine the WHT relations of the combustion chamber in an engine. As this has not been done for a Heavy-Duty (HD) engine, with peak pressures up to 250 bar, an increased in-cylinder turbulence and high exhaust gas recirculation (EGR)-rates before, it is presented in the following.
Technical Paper

Investigations on the Influence of Fuel Oil Film Interaction on Pre-ignition Events in Highly Boosted DI Gasoline Engines

2018-04-03
2018-01-1454
Premature and uncontrolled flame initiation, called pre-ignition (PI), is a prominent issue in the development of spark-ignited engines. It is commonly assumed that this abnormal combustion mode hinders progress in engine downsizing, thus inhibiting development of more efficient engines. The phenomenon is primarily observed in highly turbocharged spark ignited (SI) engines in the full load regime at low engine speeds. Subsequent engine knock induces extremely high peak pressures, potentially causing severe engine damage. The mechanisms leading to this phenomenon are not completely understood; however, it is quite plausible that a multiphase process is responsible for the pre-ignition. One effect could be the interaction between injected fuel drops and the oil film on the cylinder liner. Under certain conditions, droplets of oil or oil/fuel mixture can detach or splash from the film, leading to pre-ignition at the droplet surface towards the end of the compression phase.
Technical Paper

Impact of Non-Thermal Plasma on Particulate Emissions in Application in a Diesel Engine Exhaust Duct

2017-12-06
2017-01-5100
Particulates and nitrogen oxides comprise the main emission components of the Diesel combustion and therefore are subject to exhaust emission legislation in respective applications. Yet, with ever more stringent emission standards and test-procedures, such as in passenger vehicle applications, resulting exhaust gas after-treatment systems are quite complex and costly. Hence, new technologies for emission control have to be explored. The application of non-thermal plasma (NTP) as a means to perform exhaust gas after-treatment is one such promising technology. In several publications dealing with NTP exhaust gas after-treatment the plasma state was generated via dielectric barrier discharges. Another way to generate a NTP is by a corona high-frequency discharge. Hence, in contrast to earlier publications, the experiments in this publication were conducted on an operated series-production Diesel engine with an industrial pilottype corona ignition system.
Journal Article

Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust After Treatment

2017-03-28
2017-01-1017
The proportion of nitrogen dioxide in the engine-out emissions of a Diesel engine is of great importance for the conversion of the total oxides of nitrogen (NOX) emissions in SCR catalysts. Particularly at lower engine loads and lower exhaust temperatures an increase of the already low NO2/NOX fraction will enhance the SCR operation significantly. For this purpose, the understanding of the NO2 formation during the Diesel combustion and expansion stroke is as substantial as being aware of the different thermodynamic impacts and engine operating parameters that affect the formation process. To determine the influences on the NO2 emission level several variation series were performed on a single-cylinder research engine. Especially the charge dilution parameters like the air-fuel ratio and the EGR rate as well as the injection parameters could be identified to be decisive for the NO2 formation.
Technical Paper

Experimental Investigations on CI and SI Combustion Mode with Naphtha Fuels for Stationary Engine Applications

2017-03-28
2017-01-0874
Throughout the world cost-efficient Naphtha streams are available in refineries. Owing to less processing, CO2 emissions emitted in the course of production of these fuels are significantly lower than with conventional fuels. In common CI/SI engines, however, the deployment of Naphtha is considerably restricted due to unfavourable fuel properties, e.g. low cetane/octane numbers. Former investigations illustrated high knocking tendency for SI applications and severe pressure rise for CI combustion. Moreover, the focus of past publications was on passenger vehicle applications. Hence, this paper centers on heavy-duty stationary engine applications. Consequently, measures to increase the technically feasible IMEP with regard to limitations in knocking behaviour and pressure rise were explored whilst maintaining efficient combustion and low emissions.
Journal Article

Development of a NOx Storage-Reduction Catalyst Based Min-NOx Strategy for Small-Scale NG-Fueled Gas Engines

2016-11-08
2016-32-0072
One promising alternative for meeting stringent NOx limits while attaining high engine efficiency in lean-burn operation are NOx storage catalysts (NSC), an established technology in passenger car aftertreatment systems. For this reason, a NSC system for a stationary single-cylinder CHP gas engine with a rated electric power of 5.5 kW comprising series automotive parts was developed. Main aim of the work presented in this paper was maximising NOx conversion performance and determining the overall potential of NSC aftertreatment with regard to min-NOx operation. The experiments showed that both NOx storage and reduction are highly sensitive to exhaust gas temperature and purge time. While NOx adsorption rate peaks at a NSC inlet temperature of around 290 °C, higher temperatures are beneficial for a fast desorption during the regeneration phase. Combining a relatively large catalyst (1.9 l) with a small exhaust gas mass flow leads to a low space velocity inside the NSC.
Journal Article

Optical Investigations of Soot Formation Mechanisms and Possible Countermeasures on a Turbocharged Port Fuel Injection SI Engine

2016-10-17
2016-01-2163
Despite the known benefits of direct injection (DI) spark ignition (SI) engines, port fuel injection (PFI) remains a highly relevant injection concept, especially for cost-sensitive market segments. Since particulate number (PN) emissions limits can be expected also for PFI SI engines in future emission legislations, it is necessary to understand the soot formation mechanisms and possible countermeasures. Several experimental studies demonstrated an advantage for PFI SI engines in terms of PN emissions compared to DI. In this paper an extended focus on higher engine loads for future test cycles or real driving emissions testing (RDE) is applied. The combination of operating parameter studies and optical analysis by high-speed video endoscopy on a four-cylinder turbocharged SI engine allows for a profound understanding of relevant soot formation mechanisms.
Journal Article

High-Speed Imaging of Early Flame Growth in Spark-Ignited Engines Using Different Imaging Systems via Endoscopic and Full Optical Access

2016-04-05
2016-01-0644
This work investigates the image quality achievable with a large-aperture endoscope system and high-speed cameras in terms of detecting the premixed flame boundary in spark-ignited engines by chemiluminescence imaging. The study is an extension of our previous work on endoscopic flame imaging [SAE 2014-01-1178]. In the present work, two different high-speed camera systems were used together with the endoscope system in two production engines to quantify the time-resolved flame propagation. The systems were cinematography with a CMOS-camera, both with and without an intensifier, the latter variation being used in a four-cylinder automotive engine as well as in a single-cylinder motorcycle engine. An algorithm with automatic dynamic thresholding was developed to detect the line-of-sight projected flame boundary despite artifacts caused by the spark and the large dynamic range in image brightness across each time series.
X