Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Development of Friction Stir Weld Fatigue Evaluation Procedure Using Battelle Structural Stress Method

2014-04-01
2014-01-0909
Weld fatigue evaluation using the mesh-insensitive Battelle structural stress method has been applied to fusion welds, resistance spot welds and non-welded components. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. In this paper, a weld fatigue evaluation procedure using the Battelle structural stress method is proposed for friction stir welds currently being used in the automotive and aerospace industries. The applicability of the Battelle structural stress procedure is demonstrated by comparing fatigue life predictions for friction stir welded specimens to well-documented test data from the literature. Different specimen types, plate thicknesses and loading ratios were analyzed for several aluminum alloys.
Journal Article

Fatigue Evaluation of Notched Plate Specimens by the Battelle Structural Stress Method

2013-04-08
2013-01-1011
In this paper, the applicability of the finite element-based, mesh insensitive Battelle structural stress method is demonstrated for fatigue life predictions of notched specimens (non-welded) with different specimen types, and notch shapes. Well-documented notch fatigue data were analyzed using the Battelle structural stress fatigue evaluation procedure, including notched plate fatigue data for steel and aluminum alloys. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. Here, a similar Battelle structural stress procedure suitable for finite element modeling and service life simulations is proposed for structures with notches. Unlike weld fatigue data, the crack propagation portion of the fatigue life associated with a notch does not always dominant the total number of cycles to failure.
Technical Paper

Development of Fatigue Evaluation Procedure for Weld-Bonded Joints Using the Battelle Structural Stress Method

2012-04-16
2012-01-0477
In this paper, the Battelle structural stress method for evaluating the fatigue life of welded joints is applied to weld-bonded joints. In order to overcome the complexity of modeling and analyzing both crack paths in weld-bonded joints, a superposition approach is proposed as a reasonable and effective alternative for fatigue design purpose. The superposition approach for evaluating the fatigue life of weld-bonded joints uses two simplified finite element (FE) models: a spot weld model and an adhesive bond model. Each simplified FE model is required to represent the fatigue behavior properly and to minimize the modeling effort without sacrificing the accuracy of the results. The superposition concept can be used in practice if the life evaluation results using the superposition are comparable with the experiments. For the spot welds, the recently developed simplified procedure and master fatigue S-N curve is employed [1].
Technical Paper

Effect of Welding Induced Residual Stresses on the Fatigue Behavior of T-joints

1998-04-08
981506
This paper presents a numerical analysis of the effect of weld induced residual stress on the fatigue behavior of a T-joint. The thick-section T-joint contained 18 individual weld passes and was subjected to fully-reversed, zero-maximum, and zero-minimum fatigue cycling. The effect of the residual stress was demonstrated by comparing the result with and without residual stress. It was concluded that the local fatigue parameters (mean stress, alternating stress, and stress ratio) at the suspected crack initiation site were changed significantly by the residual stresses when the applied stress were other than fully reversed. In addition, the effect of the stress concentration at the weld was more significant that the effect of the residual stress for the applied fatigue loads levels that were considered. The analysis method presented can be used to assess weldment design and process variables.
X