Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Production of Ti-Zr Alloy by Powder Metallurgy

2013-10-07
2013-36-0388
The powder metallurgy allows titanium alloy production with savings of energy and time with higher microstructural homogeneity than those obtained by conventional processes. The processing of titanium alloys is increasing in industry, since these alloys presenting superior mechanical properties than commercially pure titanium. Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated by melting process along the last years. In these alloys were reported characteristics as excellent corrosion resistance and high biocompatibility. In this work Ti-40Zr was produced by powder metallurgy in order to produce parts with complex geometry with high microstructural homogeneity to be applied in areas such as the space industry and surgical implants. Samples were produced by mixing of initial hydrided powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 800-1600 °C, in vacuum.
Technical Paper

Production of Ti-22Nb-6Zr Shape Memory Alloy by Powder Metallurgy

2012-10-02
2012-36-0467
Shape Memory Alloys (SMA) are novel materials which have the ability to return to a predetermined shape when heated. SMA are useful as actuators which are materials that change shape, stiffness, position, natural frequency, and other mechanical characteristics in response to temperature or electromagnetic fields. Applications include engines in cars and airplanes, electrical generators and surgical implants that make use of the mechanical energy resulting from the shape transformations. Powder metallurgy allows the SMA production with savings of energy and time and with higher microstructural homogeneity than those obtained by conventional processes. In this work a new nickel-free titanium alloy Ti-22Nb-6Zr (%at) was produced in order to expand the application field of SMA. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 800-1600°C, in vacuum.
X