Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Remote Driving With a Multisensor User Interface

2000-07-10
2000-01-2358
Remote driving is a difficult task, primarily because operators have problems understanding the remote environment and making control decisions. To make remote driving easier and more productive, we are developing sensor fusion techniques using range sensors to build active, sensor fusion based interfaces. In our work, we use sensor fusion to facilitate human perception and to enable efficient command generation. In this paper, we describe a multisensor user interface for remote driving.
Technical Paper

Operator Interfaces and Network-Based Participation for Dante II

1995-07-01
951518
Dante II, an eight-legged walking robot developed by the Dante project, explored the active volcanic crater of Mount Spurr in July 1994. In this paper, we describe the operator interfaces and the network-based participation methods used during the Dante II mission. Both virtual environment and multi-modal operator interfaces provided mission support for supervised control of Dante II. Network-based participation methods including message communications, satellite transmission, and a World-Wide Web server enabled remote science and public interaction. We believe that these human-machine interfaces represent a significant advance in robotic technologies for exploration.
Technical Paper

VEVI: A Virtual Environment Teleoperations Interface for Planetary Exploration

1995-07-01
951517
Remotely operating complex robotic mechanisms in unstructured natural environments is difficult at best. When the communications time delay is large, as for a Mars exploration rover operated from Earth, the difficulties become enormous. Conventional approaches, such as rate control of the rover actuators, are too inefficient and risky. The Intelligent Mechanisms Laboratory at the NASA Ames Research Center has developed over the past four years an architecture for operating science exploration robots in the presence of large communications time delays. The operator interface of this system is called the Virtual Environment Vehicle Interface (VEVI), and draws heavily on Virtual Environment (or Virtual Reality) technology. This paper describes the current operational version of VEVI, which we refer to as version 2.0. In this paper we will describe the VEVI design philosophy and implementation, and will describe some past examples of its use in field science exploration missions.
X