Refine Your Search

Topic

Search Results

Standard

Potential Standard Steels

2000-11-10
HISTORICAL
J1081_200011
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
Standard

Numbering System for Designating Grades of Cast Ferrous Materials

2000-07-28
CURRENT
J859_200007
This SAE Recommended Practice is intended to supply a uniform means of designating cast ferrous materials reported in SAE Standards and Recommended Practices. The system outlined in this report is intended to facilitate the addition of new, widely used casting materials and also the deletion of now obsolete grades
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

Tensile Test Specimens

1999-05-20
CURRENT
J416_199905
When required, unless otherwise specified in the SAE Standards or Recommended Practices, tensile test specimens for metals shall be selected and prepared in accordance with this report. ASTM E 8, Methods of Tension Testing of Metallic Materials, gives more detailed information on tensile testing procedure, and ASTM E 4, Methods of Load Verification of Testing Machines, provides information on testing equipment calibration. In recommending these specimens for use in tensile tests it is not intended to exclude entirely the use of other test specimens for special materials or for special forms of material. It is, however, recommended that these specimens be used wherever it is feasible. Machining of specimens shall be done in such a manner as to avoid leaving severe machining strains in the material. Specimens shall be finished so that the surfaces are smooth and free from nicks and tool marks. All ragged edges shall be smoothed.
Standard

Grain Size Determination of Steels

1999-05-01
CURRENT
J418_199905
This classification for grain size comprises three sets of comparison charts to be used for determining grain size. These charts are presented in three categories as follows: Plate I - Untwinned grains (flat etch) Plate II - Twinned grains (flat etch) Plate IV - Austenite grains in steel (McQuaid-Ehn test or other test) Table 1 lists a number of materials and the comparison charts that are suggested for use in estimating their grain size by the comparison method. NOTE—The suggestions in Table 1 are based upon the customary practices in industry. For specimens prepared according to special techniques, the appropriate comparison chart should be selected on a structural appearance basis as described in the Scope.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and springs

1998-06-01
CURRENT
J132_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Chromium--Silicon Alloy Steel Wire and Springs

1998-06-01
CURRENT
J157_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium silicon alloy steel wire used for the manufacture of springs requiring resistance to set when used at moderately elevated temperatures. It also covers the processing requirements of springs fabricated from this wire.
Standard

Special Quality High-Tensile, Hard-Drawn Mechanical Spring Wire and Springs

1998-06-01
CURRENT
J271_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of special quality high tensile, hard-drawn carbon-steel spring wire with restricted size tolerances. This material is used where such restricted dimensional requirements are necessary for the manufacture of highly stressed mechanical springs and wire forms. It is generally employed for applications subject to static loads or infrequent stress repetitions. This document also covers the processing requirements of springs and forms fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1998-06-01
CURRENT
J351_199806
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Spring Wire and Springs

1998-06-01
CURRENT
J316_199806
This SAE Recommended Practice covers the mechanical, chemical, and dimensional requirements of oil-tempered carbon-steel spring wire used in the automotive and related industries. It is especially intended for the manufacture of mechanical springs and wire forms which are not subjected to a large number of high stress cycles. Class I wire is intended for moderate stress and Class II for higher stress level applications. This document also covers the processing requirements for springs fabricated from this wire.
Standard

Music Steel Spring Wire and Springs

1998-06-01
CURRENT
J178_199806
This SAE Recommended Practice covers a high quality, hard-drawn, steel spring wire, uniform in mechanical properties, intended for the manufacturer of spring and wire forms subjected to high stresses or requiring good fatigue properties. It covers processing requirements of springs fabricated from this wire.
Standard

Hard-Drawn Mechanical Spring Wire and Springs

1998-06-01
CURRENT
J113_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of hard-drawn carbon-steel spring wire in two classes used for the manufacture of mechanical springs and wire forms generally employed for applications subject to static loads or infrequent stress repetitions. Class 2 is a higher tensile strength product. This specification also covers processing requirements of the springs and forms fabricated from this wire.
Standard

Chemical Compositions of SAE Wrought Stainless Steels

1998-06-01
HISTORICAL
J405_199806
The chemical composition of standard types of wrought stainless steels are listed in ASTM Specification A240. The UNS 20000 series designates nickel-chromium manganese, corrosion resistant types that are nonhardenable by thermal treatment. The UNS 30000 series are nickel-chromium, corrosion resistant steels, nonhardenable by thermal treatment. The UNS 40000 however, includes both a hardenable, martensitic chromium steel and nonhardenable, ferritic, chromium steel. Reference to SAE J412 is suggested for general information and usage of these types of materials. See Table 1.
Standard

Methods of Measuring Case Depth

1998-02-01
HISTORICAL
J423_199802
Case hardening may be defined as a process for hardening a ferrous material in such a manner that the surface layer, known as the case, is substantially harder than the remaining material, known as the core. The process embraces carburizing, nitriding, carbonitriding, cyaniding, induction, and flame hardening. In every instance, chemical composition, mechanical properties, or both are affected by such practice. This testing procedure describes various methods for measuring the depth to which change has been made in either chemical composition or mechanical properties. Each procedure has its own area of application established through proved practice, and no single method is advocated for all purposes. Methods employed for determining the depth of case are either chemical, mechanical, or visual, and the specimens or parts may be subjected to the described test either in the soft or hardened condition.
Standard

CASE HARDENABILITY OF CARBURIZED STEELS

1997-11-01
CURRENT
J1975_199711
This SAE Information Report summarizes the characteristics of carburized steels and factors involved in controlling hardness, microstructure, and residual stress. Methods of determining case hardenability are reviewed, as well as methods to test for freedom from non-martensitic structures in the carburized case. Factors influencing case hardenability are also reviewed. Methods of predicting case hardenability are included, with examples of calculations for several standard carburizing steels. A bibliography is included in 2.2. The references provide more detailed information on the topics discussed in this document.
Standard

Categorization of Low Carbon Automotive Sheet Steel

1997-09-15
CURRENT
J2096_199709
This SAE Recommended Practice establishes a nomenclature for categorizing low carbon automotive hot rolled sheet, cold rolled sheet, and zinc and zinc alloy coated sheets.
Standard

Properties of Low Carbon Sheet Steel and Their Relationship to Formability

1997-09-01
CURRENT
J877_199709
Problems associated with the evaluation of formability or deep drawability of sheet metals are complex and may be difficult to solve due to the number of variables involved. As long ago as 1940, the AISI Technical Committee on Sheet Steel reviewed this problem. More recently, Volume 1 of the Ninth Edition of the ASM Metals Handbook contains sections on 'Low Carbon Steel and Strip' and 'Formability of Steel Sheet' that provide suggestions to help evaluate parts and select materials. The purpose of this information report is to summarize the sheet metal characteristics that are commonly used when attempting to predict the formability of sheet metal.
Standard

SINGLE TOOTH GEAR BENDING FATIGUE TEST

1997-01-01
HISTORICAL
J1619_199701
This SAE Recommended Practice defines the set-up and procedure for conducting the SAE Single Tooth Bending Fatigue Test. The details of the test fixture to be used (referred henceforth as “the test fixture” in this document) and gear test sample and the procedures for testing and analyzing the data are presented in this document.
X