Refine Your Search

Topic

Search Results

Standard

General Characteristics and Heat Treatments of Steels

2024-01-08
WIP
J412
The information and data contained in this SAE Information Report are intended as a guide in the selection of steel types and grades for various purposes. Consideration of the individual types of steel is preceded by a discussion of the factors affecting steel properties and characteristics. SAE steels are generally purchased on the basis of chemical composition requirements (SAE J403, J404, and J405). High-strength, low alloy (HSLA) steels (SAE J1392 and J1442) are generally purchased on the basis of mechanical properties; different chemical compositions are used to achieve the specified mechanical properties. Because these steels are characterized by their special mechanical properties obtained in the as-rolled condition, they are not intended for any heat treatment by the purchaser either before, during, or after fabrication. In many instances, as in the case of steels listed in SAE J1268 and J1868, hardenability is also a specification requirement.
Standard

General Data on Wrought Aluminum Alloys

2018-01-09
CURRENT
J454_201801
The SAE Standards for wrought aluminum alloys cover materials with a considerable range of properties and other characteristics, but do not include all of the commercially available materials. If none of the materials listed in Tables 1 through 7 provides the characteristics required by a particular application, users may find it helpful to consult with the suppliers of aluminum alloy products. See companion document, SAE J1434.
Standard

General Information - Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2018-01-10
CURRENT
J452_201801
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

General Information—Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2003-12-01
HISTORICAL
J452_200312
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

Glossary of Carbon Steel Sheet and Strip Terms

2019-07-29
CURRENT
J940_201907
This glossary is intended to provide engineers, metallurgists, and production personnel with uniform definitions of commonly used carbon sheet and strip terms. The glossary serves to supplement information and photographs reported in SAE J810, J763, J877, J863, and J403. Many of the terms listed apply only to hot-dipped zinc-coated products or to uncoated products. The letter C following the term identifies a term applying to coated materials, while the letters NC identify a term applying to uncoated materials. Where no identification is provided, the term is common to both.
Standard

Grain Size Determination of Steels

1999-05-01
CURRENT
J418_199905
This classification for grain size comprises three sets of comparison charts to be used for determining grain size. These charts are presented in three categories as follows: Plate I - Untwinned grains (flat etch) Plate II - Twinned grains (flat etch) Plate IV - Austenite grains in steel (McQuaid-Ehn test or other test) Table 1 lists a number of materials and the comparison charts that are suggested for use in estimating their grain size by the comparison method. NOTE—The suggestions in Table 1 are based upon the customary practices in industry. For specimens prepared according to special techniques, the appropriate comparison chart should be selected on a structural appearance basis as described in the Scope.
Standard

HARD DRAWN CARBON STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1988-12-01
HISTORICAL
J172_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

HARD DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1988-12-01
HISTORICAL
J113_198812
This specification covers the mechanical and chemical requirements of hard drawn carbon steel spring wire in two classes used for the manufacture of mechanical springs and wire forms generally employed for applications subject to static loads or infrequent stress repetitions. This specification also covers basic material and processing requirements of the springs and forms fabricated therefrom. Class 2 is a higher tensile strength product and is furnished only when specified.
Standard

HARD-DRAWN MECHANICAL SPRING WIRE AND SPRINGS

1994-06-01
HISTORICAL
J113_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of hard-drawn carbon-steel spring wire in two classes used for the manufacture of mechanical springs and wire forms generally employed for applications subject to static loads or infrequent stress repetitions. Class 2 is a higher tensile strength product. This specification also covers processing requirements of the springs and forms fabricated from this wire.
Standard

HARDNESS TESTS AND HARDNESS NUMBER CONVERSIONS

1983-12-01
HISTORICAL
J417_198312
This report lists approximate hardness conversion values; test methods for Vickers Hardness, Brinell Hardness, Rockwell Hardness Rockwell Superficial Hardness, Shore Hardness; and information regarding surface preparation, specimen thickness, effect of curved surfaces, and recommendations for Rockwell surface hardness testing for case hardened parts. The tables in this report give the approximate relationship of Vickers Brinell, Rockwell, and Scleroscope hardness values and corresponding approximate tensile strengths of steels. It is impossible to give exact relationships because of the inevitable influence of size, mass, composition, and method of heat treatment. Where more precise conversions are required, they should be developed specially for each steel composition, heat treatment, and part.
Standard

Hard Drawn Carbon Steel Valve Spring Quality Wire and Springs

1994-08-01
CURRENT
J172_199408
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

Hard-Drawn Mechanical Spring Wire and Springs

1998-06-01
CURRENT
J113_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of hard-drawn carbon-steel spring wire in two classes used for the manufacture of mechanical springs and wire forms generally employed for applications subject to static loads or infrequent stress repetitions. Class 2 is a higher tensile strength product. This specification also covers processing requirements of the springs and forms fabricated from this wire.
Standard

Hardenability Bands for Carbon and Alloy H Steels

2010-05-03
CURRENT
J1268_201005
All carbon and alloy H-band steels are shown, along with their corresponding minimum and maximum hardenability limits, for which sufficient hardenability data have been established and for grades which use the standard end-quench test. As hardenability data are accumulated for other grades, this SAE Standard will be revised to include such grades.
Standard

Hardness Tests and Hardness Number Conversions

2018-01-10
CURRENT
J417_201801
This report lists approximate hardness conversion values; test methods for Vickers Hardness, Brinell Hardness, Rockwell Hardness Rockwell Superficial Hardness, Shore Hardness; and information regarding surface preparation, specimen thickness, effect of curved surfaces, and recommendations for Rockwell surface hardness testing for case hardened parts. The tables in this report give the approximate relationship of Vickers Brinell, Rockwell, and Scleroscope hardness values and corresponding approximate tensile strengths of steels. It is impossible to give exact relationships because of the inevitable influence of size, mass, composition, and method of heat treatment. Where more precise conversions are required, they should be developed specially for each steel composition, heat treatment, and part.
Standard

High Temperature Materials for Exhaust Manifolds

2017-12-20
CURRENT
J2515_201712
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

High Temperature Materials for Exhaust Manifolds

1999-08-01
HISTORICAL
J2515_199908
A subcommittee within SAE ISTC Division 35 has written this report to provide automotive engineers and designers a basic understanding of the design considerations and high temperature material availability for exhaust manifold use. It is hoped that it will constitute a concise reference of the important characteristics of selected cast and wrought ferrous materials available for this application, as well as methods employed for manufacturing. The different types of manifolds used in current engine designs are discussed, along with their range of applicability. Finally, a general description of mechanical, chemical, and thermophysical properties of commonly-used alloys is provided, along with discussions on the importance of such properties.
Standard

High-Strength Carbon and Alloy Die Drawn Steels

2009-11-24
CURRENT
J935_200911
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high-strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
X