Refine Your Search

Topic

Search Results

Standard

Automotive Ductile (Nodular) Iron Castings

2017-12-20
CURRENT
J434_201712
This SAE standard covers the minimum mechanical properties measured on separately cast test pieces of varying thickness and microstructural requirements for ductile iron castings used in automotive and allied industries. Castings may be specified in the as-cast or heat-treated condition. If castings are heat-treated, prior approval from the customer is required. The appendix provides general information on chemical composition, microstructure and casting mechanical properties, as well as other information for particular service conditions. In this standard SI units are primary and in-lb units are derived.
Standard

Valve Seat Insert Information Report

2017-12-20
CURRENT
J1692_201712
This SAE Information Report provides engineers and designers with: a Types of valve seat inserts and their nomenclature b Valve seat insert alloy designations and their chemistries c Valve seat insert alloy metallurgy d Typical mechanical and physical properties of insert alloys e Recommended interference fits f Installation procedures g Application considerations
Standard

Use of Terms Yield Strength and Yield Point

2017-10-10
CURRENT
J450_201710
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

Categorization and Properties of Dent Resistant, High Strength, and Ultra High Strength Automotive Sheet Steel

2017-03-22
CURRENT
J2340_201703
This SAE Recommended Practice defines and establishes mechanical property ranges for seven grades of continuously cast high strength automotive sheet steels that can be formed, welded, assembled, and painted in automotive manufacturing processes. The grade of steel specified for an identified part should be based on part requirements (configuration and strength) as well as formability. Material selection should also take into consideration the amount of strain induced by forming and the impact strain has on the strength achieved in the finished part. These steels can be specified as hot-rolled sheet, cold-reduced sheet, uncoated, or coated by hot dipping, electroplating, or vapor deposition of zinc, aluminum, and organic compounds normally applied by coil coating. The grades and strength levels are achieved through chemical composition and special processing. Not all combinations of strength and coating types may be commercially available. Consult your steel supplier for details.
Standard

Standardized Dent Resistance Test Procedure

2015-04-28
CURRENT
J2575_201504
These test procedures were developed based upon the knowledge that steel panel dent resistance characteristics are strain rate dependent. The “quasi-static” section of the procedure simulates real world dent phenomena that occur at low indenter velocities such as palm-printing, elbow marks, plant handling, etc. The indenter velocity specified in this section of the procedure is set to minimize material strain rate effects. The dynamic section of the procedure simulates loading conditions that occur at higher indenter velocities, such as hail impact, shopping carts, and door-to-door parking lot impact. Three dent test schedules are addressed in this procedure. Schedule A is for use with a specified laboratory prepared (generic) panel, Schedule B is for use with a formed automotive outer body panel or assembly, and Schedule C addresses end product or full vehicle testing.
Standard

Selection of Zinc and Zinc-Alloy (Hot-Dipped and Electrodeposited) Coated Steel Sheet

2015-04-28
CURRENT
J1562_201504
Zinc and zinc-alloy coated steel is used to enhance a structure’s protection against corrosion degradation. For the purpose of this SAE Recommended Practice, a galvanized coating is defined as a zinc or zinc-alloy metallic coating. The selection of the optimum galvanized steel sheet product depends on many factors, the most important being: desired corrosion protection, formability, weldability, surface characteristics, and paintability. The trade-offs of these product characteristics are more complex than is the case with uncoated steel sheet products.
Standard

Categorization and Properties of Advanced High Strength Automotive Sheet Steels

2015-04-28
HISTORICAL
J2745_201504
This SAE Recommended Practice defines various grades of continuously cast high-strength sheet steels and establishes mechanical property ranges. These sheet steels can be formed, welded, assembled and painted in automotive manufacturing processes. They can be specified as hot-rolled or cold-rolled sheet. Furthermore, they can be coated (hot-dipped galvanized, hot-dipped galvannealed, and electrogalvanized) or uncoated. Not all combinations of strength, dimensions and coatings may be commercially available; consult your steel supplier for details.
Standard

Selecting and Specifying Hot and Cold Rolled Steel Sheet and Strip

2015-04-28
CURRENT
J126_201504
This SAE Recommended Practice outlines a procedure for selecting the proper specification for carbon steel sheet and strip which are purchased to make an identified part. Specifications considered are: ASTM A109—Steel, Carbon, Cold Rolled Strip. ASTM A569—Steel, Carbon (0.15 maximum percent), Hot Rolled Sheet, Commercial Quality (HRCQ). ASTM A621—Steel, Sheet, Carbon, Hot Rolled, Drawing Quality (HRDQ). ASTM A622—Steel, Sheet, Carbon, Hot Rolled, Drawing Quality, Special Killed (HRDQSK). ASTM A568—Steel, Carbon and High-Strength Low-Alloy Hot Rolled Sheet, and Cold Rolled Sheet, General Requirements. ASTM A366—Steel, Carbon, Cold Rolled Sheet, Commercial Quality (CRCQ). ASTM A619—Steel, Sheet, Carbon, Cold Rolled, Drawing Quality (CRDQ). ASTM A620—Steel, Sheet, Carbon, Cold Rolled, Drawing Quality, Special Killed (CRDQSK). ASTM A749M—Steel, Carbon and High-Strength Low-Alloy, Hot Rolled Strip, General Requirements.
Standard

Categorization and Properties of SAE Cold Rolled Strip Steels

2015-04-28
HISTORICAL
J2392_201504
This SAE recommended practice defines and establishes tolerances and attributes of cold rolled strip steels. Differences between cold rolled strip and cold rolled sheet products are discussed so that process designers can make informed material selection decisions.
Standard

Standard Sheet Steel Thickness and Tolerances

2015-04-28
HISTORICAL
J1058_201504
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Categorization and Properties of Low-Carbon Automotive Sheet Steels

2015-04-28
CURRENT
J2329_201504
This SAE Recommended Practice establishes mechanical property ranges for low-carbon automotive hot-rolled sheet, cold-rolled sheet, and metallic-coated sheet steels. It also contains information that explains the different nomenclature used with these steels.
Standard

Classification of Common Surface Imperfections in Sheet Steel

2015-03-05
WIP
J810
Common or obvious surface imperfections, which sometimes occur in sheet steel, are normally visible to the naked eye before or after fabrication. Illustrations and definitions of these imperfections are contained in this SAE Information Report. The identifying names are those commonly used throughout the steel industry. The imperfections identified include the major and most often encourntered imperfections known to exist at this time. These imperfections are variable in appearance and severity. Extreme conditions have been selected in some instances in order to obtain suitable photographs.
Standard

Carbon and Alloy Steels

2015-01-23
CURRENT
J411_201501
This SAE Information Report describes the processing and fabrication of carbon and alloy steels. The basic steelmaking process including iron ore reduction, the uses of fluxes, and the various melting furnaces are briefly described. The various types of steels: killed, rimmed, semikilled, and capped are described in terms of their melting and microstructural differences and their end product use. This document also provides a list of the commonly specified elements used to alloy elemental iron into steel. Each element’s structural benefits and effects are also included. A list of the AISI Steel Products Manuals is included and describes the various finished shapes in which steel is produced.
Standard

Chemical Compositions of SAE Carbon Steels

2014-06-30
HISTORICAL
J403_201406
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Numbering Metals and Alloys

2012-10-15
CURRENT
J1086_201210
This SAE Recommended Practice describes a unified numbering system (UNS) for metals and alloys which have a "commercial standing" (see 6.1), and covers the procedure by which such numbers are assigned. Section 2 describes the system of alphanumeric designations or "numbers" established for each family of metals and alloys. Section 3 outlines the organization established for administering the system. Section 4 describes the procedure for requesting number assignment to metals and alloys for which UNS numbers have not previously been assigned.
Standard

Selection and Use of Steels

2012-03-12
CURRENT
J401_201203
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Mechanical Properties of Heat Treated Wrought Steels

2011-10-27
CURRENT
J413_201110
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross-sectional hardness produced by tempering after through hardening will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels.
X