Refine Your Search

Topic

Search Results

Standard

SSB1.005 Radiation Hardness Assurance

2019-12-20
WIP
SSB1_005
This document is an annex to EIA Engineering Bulletin SSB-1 (the latest revision). This document provides reference information and guidance concerning methods used by the semiconductor industry and original equipment manufacturers related to radiation hardness assessments. This document is broken into three primary sections. Section 3.0 discusses part characterization with focus on selection criteria and acceptance testing. Section 4.0 discusses design hardening for piece parts with focus on degraded design limits and radiation design margin. The last section, Section 5.0, of this report is on hardness assurance inspection and test. This section discusses total ionizing dose, displacement damage and single event effects testing in detail.
Standard

Requirements for Plastic Encapsulated Discrete Semiconductors in Space Applications

2019-08-07
CURRENT
AS6294/3
This document establishes the requirements for screening, qualification, and lot acceptance testing of Plastic Encapsulated Discrete Semiconductors (PEDS) for use in space application environments. The scope of this document is intended for standard silicon based technology only, but the process and methodology described within can be adopted for other technologies such as Silicon Carbide, Gallium Nitride, and Gallium Arsenide. However, when non-silicon based technology parts are being used, the device characterization shall be modified, and it is recommended to use available industry standards based upon published research/testing reports for those technology to address applicable physics of failure.
Standard

Failure Rate Estimating

2019-07-15
WIP
SSB1_004B
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
Standard

Long Term Storage of Electronic Devices

2017-01-04
CURRENT
GEIASTD0003A
This document provides an industry standard for Long Term Storage (LTS) of electronic devices by drawing from the best long term storage practices currently known. LTS is defined as any device storage for more than 12 months but typically allows for much longer (years). While intended to address the storage of unpackaged semiconductors and packaged electronic devices, nothing in this standard precludes the storage of other items under the storage levels defined herein. This standard is not intended to address built-in failure mechanisms (e.g., tin whiskers, plating diffusion, and intermetallics) that would take place regardless of storage conditions
Standard

Counterfeit Parts & Materials Risk Mitigation

2016-11-08
CURRENT
TB0003A
This Technical Bulletin covers the following areas of concern. Prevention: Actions recommended for procuring parts and materials with a full warranty; Actions recommended for minimizing risks and protecting your Program from counterfeiting; Actions recommended when buying from a non-authorized supplier. Detection: Actions recommended when procuring parts from an unauthorized supplier or otherwise suspect that a part or material at risk of being counterfeit has been procured. Risk Mitigation: Actions recommended when no reasonable alternatives exist (e.g., a redesign is required, an unacceptable schedule delay will result, the program or customer cannot bear the additional cost) and the decision has been made to procure from a non-authorized supplier.
Standard

Derating of Electronic Components

2015-10-13
WIP
GEIASTD0008A
This Standard specifies the minimum derating requirements for using electronic components in moderately severe environments. These environments are assumed to include Airborne Inhabited Cargo (AIC), Airborne Inhabited Fighter (AIF), Ground Mobile (GM), and Naval Sheltered (NS) environments specified in MIL-HDBK-217. This Standard is intended to supersede the derating limits contained in Defense Standardization Program Office (DSPO) Standardization Directive SD-18, Naval Standard TE000-AB-GTP-010, and Air Force ESD-TR-85-148. It is intended that a future revision of this Standard will include additional requirements for derating for other environments (e.g. Airborne Uninhabited Cargo). Since this Standard specifies the minimum derating requirements, (sub)contractors may derate in excess of these requirements.
Standard

Diminishing Manufacturing Sources and Material Shortages (DMSMS) Management Practices

2015-07-01
CURRENT
GEB1
Diminishing Manufacturing Sources and Material Shortages (DMSMS) is the loss or impending loss of manufacturers or suppliers of critical items and raw materials due to production discontinuance. DMSMS is an increasingly difficult problem for DoD weapon systems because the manufacturing lives of many critical items get shorter while the life cycles of military weapon systems keep increasing. Traditionally, efforts to mitigate the effects of DMSMS have been reactive; that is, the effects are addressed only when they are seen. This reactive approach to DMSMS solutions leads to decisions that put a premium on faster solution paths with attractive short-term gains in order to avoid system inoperability, while ignoring the long-term solution paths that would lead to generic families of solutions or larger-scale solutions with the capability of avoiding future DMSMS issues. In order to solve DMSMS issues with lower overall cost, DMSMS solutions must change from reactive to proactive.
Standard

Reducing the Risk of Tin Whisker-Induced Failures in Electronic Equipment

2014-10-01
CURRENT
GEIAGEB0002
This Bulletin provides a brief description of tin whisker formation and describes various methods recommended by government and industry to reduce the risk of tin whisker-induced failures in electronic hardware. It is not a mandate nor does it contain any requirements. A tin whisker is a single crystal that emerges from tin-finished surfaces. Tin whiskers can pose a serious reliability risk to electronic assemblies that have pure tin finish. The general risks fall into several categories: [1, 2, 3, 8, 16] Short Circuits: The whisker can create a short circuit, either by 1) growing from an area at one potential to an area at another or 2) breaking free and later bridging these areas. In some cases, these shorts may be permanent and cause catastrophic system failures. A transient short may result if the available current exceeds the fusing current of the whisker, and the whisker can fuse open.
Standard

Environmental Tests and Associated Failure Mechanisms

2014-09-12
CURRENT
SSB1_002
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications. This document provides reference information concerning the environmental stresses associated with tests specifically designed to apply to (or have unique implications for) plastic encapsulated microcircuits and semiconductors, and the specific failures induced by these environmental stresses.
Standard

Acceleration Factors

2014-09-12
CURRENT
SSB1_003A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). This document provides reference information concerning acceleration factors commonly used by device manufacturers to model failure rates in conjunction with statistical reliability monitoring. These acceleration factors are frequently used by OEMs in conjunction with physics of failure reliability analysis to assess the suitability of plastic encapsulated microcircuits and semiconductors for specific end use applications.
Standard

Qualification and Reliability Monitors

2014-09-12
CURRENT
SSB1_001
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). The scope of this document is to establish the recommended minimum qualification and monitoring testing of plastic encapsulated microcircuits and discrete semiconductors suitable for potential use in many rugged, military, severe, or other environments.
Standard

Derating of Electronic Components

2011-08-01
CURRENT
GEIASTD0008
This Standard specifies the minimum derating requirements for using electronic components in moderately severe environments. These environments are assumed to include Airborne Inhabited Cargo (AIC), Airborne Inhabited Fighter (AIF), Ground Mobile (GM), and Naval Sheltered (NS) environments specified in MIL-HDBK-217. This Standard is intended to supersede the derating limits contained in Defense Standardization Program Office (DSPO) Standardization Directive SD-18, Naval Standard TE000-AB-GTP-010, and Air Force ESD-TR-85-148. It is intended that a future revision of this Standard will include additional requirements for derating for other environments (e.g. Airborne Uninhabited Cargo). Since this Standard specifies the minimum derating requirements, (sub)contractors may derate in excess of these requirements.
Standard

Failure Rate Estimating

2009-04-01
CURRENT
SSB1_004A
This document is an annex to EIA Engineering Bulletin SSB-1, Guidelines for Using Plastic Encapsulated Microcircuits and Semiconductors in Military, Aerospace and Other Rugged Applications (the latest revision). Failure-Mechanism-Driven Reliability Monitoring draws upon the concepts and implementation of line controls, process stability, and effective monitoring programs in lieu of qualifying a product based solely on a fixed list of tests. A supplier must identify those failure mechanisms that may be actuated through a given product / process change(s), and must design and implement reliability tests adequate to assess the impact of those failure mechanisms on system level reliability. In order for this to be effective, the supplier establishes a thorough understanding of and linkage to their reliability monitoring program.
Standard

Counterfeit Parts & Materials Risk Mitigation

2009-02-01
HISTORICAL
TB0003
This Technical Bulletin covers the following areas of concern. Prevention: Actions recommended for procuring parts and materials with a full warranty; Actions recommended for minimizing risks and protecting your Program from counterfeiting; Actions recommended when buying from a non-authorized supplier. Detection: Actions recommended when procuring parts from an unauthorized supplier or otherwise suspect that a part or material at risk of being counterfeit has been procured. Risk Mitigation: Actions recommended when no reasonable alternatives exist (e.g., a redesign is required, an unacceptable schedule delay will result, the program or customer cannot bear the additional cost) and the decision has been made to procure from a non-authorized supplier.
X