Refine Your Search

Topic

Search Results

Standard

In-Service Fiber Optic Inspection, Evaluation, and Cleaning, Best Practices, Multi-Fiber Push on Termini

2020-03-18
CURRENT
ARP6283/2
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of multi-fiber push on (MPO) (referred to as multi-fiber) fiber optic interconnect components, test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with multi-fiber fiber optic termini.
Standard

In-Service Fiber Optic Inspection, Evaluation, and Cleaning, Best Practices, Expanded Beam Termini

2020-03-18
CURRENT
ARP6283/1
This document provides user information on best practice methods and processes for the in-service inspection, evaluation, and cleaning of expanded beam (EB) fiber optic interconnect components (termini, alignment sleeves, and connectors), test equipment, and test leads based on the information provided in AIR6031 and ARP6283. This document provides the user with a decision-making tool to determine if the fiber optic components are acceptable for operation with EB fiber optic termini.
Standard

M29504/05 Socket Terminus Alignment Sleeve Retention

2020-01-02
WIP
ARP7449
Aerospace Standard XXXX M29504/05 Socket Terminus Alignment Sleeve Retention establishes the method to properly retain the alignment sleeve onto the M29504/05 socket terminus. This document defines an approved method to properly secure the alignment sleeve onto the M29504/05 socket terminus using a torque tool and an adapter designed specifically to accomplish this procedure.
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-10-24
WIP
ARP6676
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
Standard

Inline Optical Power Monitoring, Network End-to-End Data Link Evaluation System

2019-10-02
CURRENT
AIR6552/1
This document establishes methods to obtain, store, and access data about the health of a fiber optic network using commercially available inline optical power monitoring sensors. This document is intended for: Managers Engineers Technicians Contracting officers Third party maintenance agencies Quality assurance
Standard

Reliability Assurance of Photonic Integrated Circuit (PIC) Based Devices Used in Aerospace Applications

2019-05-08
WIP
ARP7354
This document is intended to provide reliability assurance recommended practices for the deployment of individual photonic devices and PIC-based devices into aerospace platforms, focusing on reliability requirements to reach Technology Readiness Level (TRL) 7, 8 and 9. It will cover reliability assurance tests for single element and PIC chips, packaged single element and PIC chips and some single element and PIC based higher functionality modules, such as fiber-optic transmitters and receivers, free space optical transmitters and receivers, illuminators and sources for optical sensors. The document will provide the reasons and methods for aerospace reliability assurance of PIC chips, PIC based packages and PIC based devices. It will be as inclusive as possible, including PIC chips fabricated in the main material systems: semiconductors (Group IV, III-V, II-VI), electro-optic crystals (lithium niobate) and polymers.
Standard

Aerospace Epoxy Technologies

2019-04-05
WIP
AIR7993
To detail the different epoxy types available for different aerospace applications which require different temperature ranges. Explain incoming/final inspection requirements and storage requirements. Examine the epoxy chemical make up with explanations of purpose in performance.
Standard

Splicer, Fusion, Fiber Optic, Aerospace

2019-04-02
WIP
AS6479A
This SAE Aerospace Standard (AS) defines fiber optic fusion splicers acceptable for the installation and repair of fiber optic interconnects in aerospace applications. Two different application environments are defined, depending on whether there is risk of flammable vapor or hazardous atmosphere being present. Equipment suited to flammable or hazardous environments may be over specified for factory, depot, or other relatively safe environments. To address these different application environments, two types of fusion splicer will be specified in applicable detail specifications: Type I. For hazardous environments specifically including potentially flammable or explosive atmospheres. Type II. For environments in which it is established that there is no risk of flammable or explosive vapors being present.
Standard

Epoxy Installation Techniques for Aerospace Fiber Optic Assemblies

2019-03-28
WIP
ARP7983
Describes the different types of epoxies, methods of mixing, installation and inspections into optical connectors/terminus. Illustrate typical examples of processing equipment and tooling. Highlight critical parameters and potential failure modes during epoxy processing.
Standard

Characterization and Requirements for New Aerospace Fiber Optic Cable Assemblies - Jumpers, End Face Geometry, Link Loss Measurement, and Inspection

2019-03-28
WIP
AS5675A
To create a standard that instructs both supplier and user in the testing and characterization of initial build fiber optic cable assemblies for avionics/aerospace applications. This can be in the plant or in the avionics “box.” It includes specification of jumpers (aerospace measurement quality jumpers), end faces, link loss requirements and inspection.
Standard

Fiber Optic Sensor Specification Guidelines for Aerospace Applications

2018-12-17
CURRENT
ARP6366
ARP6366 defines a comprehensive and widely-accepted set of specification guidelines to be considered by those seeking to use or design fiber optic sensors for aerospace applications. Some of the most common applications for fiber optic sensing within aerospace include inertial guidance and navigation (gyros) and structural monitoring (temperature, strain, and vibration sensing). Common sensor infrastructure elements include: transmitting and receiving opto-electronics (e.g., sources and receivers); multiplexing and demultiplexing optics; optical cabling; and signal processing (both hardware and firmware/software).
Standard

FIBER OPTIC DESIGN GUIDELINES FOR AEROSPACE

2018-10-18
WIP
AIR8448
This document provides guidance on key areas of system design to achieve high performance and high reliability for mission critical aerospace systems and platforms. The fundamental element of a reliable, functional aerospace fiber optic application is the system design. It is the system designers’ task to define the methods, components, installation and processes supporting the transmission of the optical signal through the platform, while providing a physical layer with the necessary performance, reliability, and readiness for the application.
Standard

High Performance Epoxies for Aerospace Applications

2018-10-18
WIP
AS8449
The goal of this document would be to control specific configurations of epoxies approved for aerospace. Providing a structured standard for configuration control of epoxies and appropriate applications and areas of use for multiple grades and environmental performance considerations.
Standard

Verification of Discrete and Packaged Photonic Device Technology Readiness

2018-08-20
CURRENT
ARP6318
This document is intended for discrete and integrated digital, wavelength division multiplexing (WDM), and analog/radio frequency (RF) photonic components developed for eventual transition to aerospace platforms. The document provides the reasons for verification of photonic device life test and packaging durability. The document focuses on pre-qualification activity at the optical component level to achieve TRL 6. The recommended tests in this document are intended to excite typical failure mechanisms encountered with photonic devices in an aerospace operating environment, and to build confidence that a technology is qualifiable during a program’s engineering and manufacturing development phase. This recommended practice is targeting components to support electrical-to-optical, optical-to-electrical, or optical-to-optical functionality. Passive optical waveguide, fiber optic cable, and connector components that are integral to a photonic package are included.
X