Refine Your Search

Topic

Search Results

Standard

Verification Methods for AS5653 Network Terminal

2019-04-24
CURRENT
AS6088
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Terminal (NT) complies with the NT requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
Standard

Linear Token Passing Multiplex Data Bus

2017-02-21
CURRENT
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2011-11-15
HISTORICAL
AS4074/2A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2016-10-21
CURRENT
AS4074/2B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2016-10-21
CURRENT
AS4074/1B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-2 Fiber Optic Media Interface Characteristics

2001-10-01
HISTORICAL
AS4074/2
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type E-1 Electrical Media Interface Characteristics

2016-10-21
CURRENT
AS4074/3B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type E-1 Electrical Media Interface Characteristics

2001-10-01
HISTORICAL
AS4074/3
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Linear Token Passing Multiplex Data Bus

2011-11-15
HISTORICAL
AS4074A
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

Type E-1 Electrical Media Interface Characteristics

2011-11-15
HISTORICAL
AS4074/3A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2001-10-01
HISTORICAL
AS4074/1
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Type F-1 Fiber Optic Media Interface Characteristics

2011-11-15
HISTORICAL
AS4074/1A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
Standard

Linear Token Passing Multiplex Data Bus

1993-12-01
HISTORICAL
AS4074
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated.
Standard

PI-BUS

2006-07-25
HISTORICAL
AS4710
This document is a result of the desire for interoperability of modules on a Pi-Bus. This standard is a stand alone document that used the Very High Speed Integrated Circuit (VHSIC) Phase 2, Interoperability Standard PI-Bus Specification 2.2, as a starting point.
Standard

PI-Bus

2012-05-03
CURRENT
AS4710A
This document is a result of the desire for interoperability of modules on a Pi-Bus. This standard is a stand alone document that used the Very High Speed Integrated Circuit (VHSIC) Phase 2, Interoperability Standard Pi-Bus Specification 2.2, as a starting point.
Standard

HIGH SPEED RING BUS (HSRB) STANDARD

1988-08-29
HISTORICAL
AS4075
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

High Speed Ring Bus (HSRB) Standard

2012-05-03
CURRENT
AS4075A
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

IEEE-1394b for Military and Aerospace Vehicles - Applications Handbook

2019-08-12
CURRENT
AIR5654A
This Handbook is intended to accompany or incorporate AS5643, AS5643/1, AS5657, AS5706, and ARD5708. In addition, full understanding of this Handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a, and IEEE-1394b standards. This Handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
X