Criteria

Text:
Display:

Results

Viewing 1 to 30 of 83
CURRENT
2017-08-18
Standard
AS4113A
This test plan is broken into three major sections for the testing of bus controllers Electrical, Protocol and Noise tests.
CURRENT
2017-08-15
Standard
AS4115A
This test plan consists of two major sections for testing of MIL-STD-1553B data bus systems: Bus Network and System Integration Tests.
CURRENT
2017-08-14
Standard
AS4114A
This test plan consists of two major sections for the production testing of bus controllers: Electrical tests and Protocol tests.
CURRENT
2017-08-14
Standard
AS4116A
This Aerospace Standard (AS) defines the test requirements for determining that bus monitors meet the requirements of MIL-STD-1553B, Digital Time Division Command/Response Multiplex Data Bus.
CURRENT
2017-08-10
Standard
AS4112A
This test plan is broken into two major sections for the production testing of remote terminals: Electrical and Protocol.
CURRENT
2017-08-10
Standard
AS4117A
This test plan defines the requirements of data bus components which comply with the requirements of MIL-STD-1553B, Digital Time Division Command/Response Multiplex Data Bus.
CURRENT
2017-08-10
Standard
AS4111A
This SAE Aerospace Standard (AS) contains a sample test plan for AS15531 or MIL-STD-1553B Remote Terminals (RT) that may serve several different purposes. This document is intended to be contractually binding when specifically called out in a specification, Statement of Work (SOW), or when required by a Data Item Description (DID). Any and all contractor changes, alterations, or testing deviations to this section shall be separately listed for easy review.
2017-08-01
WIP Standard
ARP7208
This ARP establishes guidelines for the use of IEEE-802.3 as a data bus network in military and aerospace vehicles. It encompasses the data cable and its connections for a system utilizing 10Base-T, 100Base-T, 1000BASE-T and 10GBASE-T over copper medium dependent interfaces (MDI). This document contains extensions/restrictions to “off-the-shelf” IEEE-802.3 standards, and assumes that the reader already has a working knowledge of IEEE-802.3.
CURRENT
2017-03-21
Standard
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
CURRENT
2017-02-21
Standard
AS4074B
This standard specifies the characteristics of the SAE Linear Token Passing Bus (LTPB) Interface Unit. The LTPB provides a high reliability, high bandwidth, low latency serial interconnection network suitable for utilization in real time military and commercial applications. Multiple redundant data paths can be implemented to enhance reliability and survivability in those applications which require these attributes. The token passing and data exchange protocols are optimized to provide low latency and fast failure detection and correction. Physical configurations with bus lengths up to 1000 m can be accommodated. This specification defines the following: General Description (3.1): An overview of the LTPB protocol. Physical Media Interface (3.2): This portion of the standard defines the physical interface to both optical and electrical bus media.
CURRENT
2016-10-21
Standard
AIR4886A
The purpose of this document is to establish the requirements for Real-Time Communication Protocols (RTCP). Systems for real-time applications are characterized by the presence of hard deadlines where failure to meet a deadline must be considered a system fault. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms and commercial aircraft, but are generally applicable to any distributed, real-time, control systems. These requirements are primarily targeted for the Transport and Network Layers of peer to peer protocols, as referenced in the Open System Interconnect Reference Model (2.2.1 and 2.2.2), developed by the International Standards Organization (ISO). These requirements are intended to complement SAE AS4074 (2.1.1) and AS4075 (2.1.2), and future SAE communications standards.
CURRENT
2016-10-21
Standard
AIR4271A
This Aerospace Information Report (AIR) has been prepared by the Systems Applications and Requirements Subcommittee of SAE Committee AS-2. It is intended to provide guidance primarily, but not exclusively, for specifiers and designers of data communication systems for real time military avionics applications within a platform. The subject of high speed data transmission is addressed from two standpoints: (1) the influence of developments in technology on avionics architectures as a whole and (2) the way in which specific problems, such as video, voice, closed loop control, and security may be handled. While the material has been prepared against a background of experience within SAE AS-2 relating to the development of a family of high speed interconnect standards, reference to specific standards and interconnect systems is minimized.
CURRENT
2016-10-21
Standard
AIR5683A
MIL-STD-1553 establishes requirements for digital command/response time division multiplexing (TDM) techniques on military vehicles, especially aircraft. The existing MIL-STD-1553 network operates at a bit rate of 1 Mbps and is limited by the protocol to a maximum data payload capacity of approximately 700 kilobits per second. The limited capacity of MIL-STD-1553 buses coupled with emerging data rich applications for avionics platforms plus the expense involved with changing or adding wires to thousands of aircraft in the fleet has driven the need for expanding the data carrying capacity of the existing MIL-STD-1553 infrastructure.
CURRENT
2016-10-21
Standard
AIR4295A
This document contains guidance for using SAE publications, AS4112 through AS4117 (MIL-STD-1553 related Test Plans). Included herein are the referenced test plan paragraphs numbers and titles, the purpose of the test, the associated MIL-STD-1553 paragraph, commentary concerning test methods and rationale, and instrumentation requirements.
CURRENT
2016-10-21
Standard
AS15532A
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S.
CURRENT
2016-10-21
Standard
AS4074/3B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. The minimum and maximum timing requirements for operation of this implementation of the LTPB. The data coding used to encode and decode the data for transmission. The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
CURRENT
2016-10-21
Standard
AS4074/2B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. The minimum and maximum timing requirements for operation of this implementation of the LTPB. The data coding used to encode and decode the data for transmission. The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
CURRENT
2016-10-21
Standard
AS4074/1B
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. The minimum and maximum timing requirements for operation of this implementation of the LTPB. The data coding used to encode and decode the data for transmission. The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
CURRENT
2016-04-04
Standard
AS5643B
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation.
2015-04-14
WIP Standard
AS6509
Fibre Channel is the primary avionics bus on many modern military aircraft. It is also the defined High-Speed bus for MIL-STD-1760E weapons applications. Profiled Ethernet networks are the primary avionics bus in many commercial aircraft and Commercial Ethernet is an ever increasing presence in modern military aircraft as well. This network standard is a convergence of Fibre Channel and Ethernet into a unified network standard which will provide a seamless approach to integrating end systems from either technology into a merged network structure. This work is based upon the commercial data storage market industry’s work on the Converged Data Storage Network or FCoE (Fibre Channel over Ethernet). This effort will look at profiling the FCoE work done in the commercial industry and adding information where necessary to affect a networking standard that will seamlessly integrate end systems from Commercial Ethernet, Fibre Channel, or FCoE enhanced devices.
CURRENT
2014-01-03
Standard
AS5653B
AS5653 may be applied to Air Vehicles and Stores implementing MIL-STD-1760 Interface Standard for Aircraft/Store Electrical Interconnection System.
2013-11-19
WIP Standard
AS5643/1A
This SAE Aerospace Standard (AS) establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths. This document contains extensions/restrictions to "off-the-shelf " IEEE-1394 standards, and assumes that the reader already has a working knowledge of IEEE-1394. This document does not identify specific environmental requirements (electromagnetic compatibility, temperature, vibration, etc.); such requirements will be vehicle-specific and even LRU-specific. However, the hardware requirements and examples contained herein do address many of the environmental conditions that military and aerospace vehicles may experience. One should reference the appropriate sections of MIL-STD-461E for their particular LRU, and utilize handbooks such as MIL-HDBK-454A and MIL-HDBK-5400 for guidance.
2013-11-05
WIP Standard
AS5706A
This document establishes test plans/procedures for the AS5643/1 Slash Sheet. The AS5643/1 Slash Sheet establishes guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. It encompasses the data bus cable and its interface electronics for a system utilizing S400 over copper medium over extended lengths.
2013-10-22
WIP Standard
AIR5654A
This handbook is intended to accompany or incorporate AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5643/1 S400 Copper Media Interface Characteristics over Extended Distances, AS5657 Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications, AS5706 Test Plan/procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances, and ARD5708 Frequently Asked Questions about IEEE-1394b and SAE AS5643. In addition, full understanding of this handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a and IEEE-1394b standards. This handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
2013-10-22
WIP Standard
AS5657A
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
HISTORICAL
2012-07-25
Standard
AS5653A
AS5653 may be applied to Air Vehicles and Stores implementing MIL-STD-1760 Interface Standard for Aircraft/Store Electrical Interconnection System.
CURRENT
2012-05-03
Standard
AIR4903A
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
CURRENT
2012-05-03
Standard
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: Preserve the requirements for more than 2 years Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
CURRENT
2012-05-03
Standard
AIR4288A
This document is intended to explain, in detail, the rationale behind the features and functions of the AS4074, Linear, Token-passing, Bus (LTPB). The discussions also address the considerations which a system designer should take into account when designing a system using this bus. Other information can be found in these related documents: AIR4271 - Handbook of System Data Communication AS4290 - Validation Test Plan for AS4074
CURRENT
2012-05-03
Standard
AIR4289A
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
Viewing 1 to 30 of 83