Refine Your Search

Topic

Search Results

Standard

Supplemental Oxygen Devices with Automatic or Manual Presentation

2024-01-11
WIP
ARP4287B
This SAE Aerospace Recommended Practice (ARP) provides design, operation, construction, test and installation recommendations for equipment that automatically presents supplemental oxygen masks to cabin occupants in the event of loss of cabin pressure. It specifically covers automatic presentation for transport category aircraft that operate above 30 000 ft (9144 m) altitude. It also provides guidance for similar equipment used in non-transport category aircraft, or aircraft operated below 30 000 ft (9144 m) altitude.
Standard

Effects of Acute Altitude Exposure in Humans: Requirements for Physiological Protection

2023-12-18
CURRENT
AIR825/2A
The intent of this SAE Aerospace Information Report (AIR) is to describe the effects of the environmental changes on human physiology and the protection required to avoid negative consequences resulting from altitude exposure. A brief presentation of basic terms and considerations required to discuss the topic of human physiology at altitude is followed by an overview of the cardiovascular and respiratory systems. Issues specifically related to human exposure to altitude are discussed. Hypoxia, hyperventilation, barotrauma, and decompression sickness (DCS) are each addressed. One goal of this AIR is to demonstrate the necessity of oxygen use for prevention of physical and psychological problems, or loss of consciousness in an aircraft. This should provide a clear understanding as to why the use of supplemental oxygen is required for flight crew and healthy passengers at altitude greater than 10000 feet (3048 m).
Standard

Cockpit Crew Oxygen Equipment for Use from 35000 to 45000 feet Altitude

2023-11-10
CURRENT
AS5722
This document covers minimum performance standards for protective equipment used on the flight deck during rapid decompression (5 to 30 seconds) up to a maximum pressure altitude of 45000 feet. Equipment with the capability to adequately protect flight deck crew from hypoxia up to FL450 is anticipated to provide sufficient protection at lower altitudes.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2023-09-10
WIP
AIR5648B
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
Standard

Crew Member Oxygen Regulators, Demand

2023-08-23
CURRENT
AS8027
This SAE Aerospace Standard (AS) is intended to apply to those oxygen regulators which supply gaseous oxygen at breathing pressures to meet physiological requirements of aircraft flight crew members. It defines the minimum performance requirements and testing for aircraft demand type breathing oxygen regulators.
Standard

Liquid Oxygen Systems

2023-08-23
CURRENT
AIR825/5A
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment.
Standard

Guide for Evaluating Combustion Hazards in Aircraft Oxygen Systems

2023-08-23
CURRENT
AIR825/13
This guide is intended to promote safe designs, operations and maintenance on aircraft and ground support oxygen systems. This is also a summary of some work by the ASTM G 4 Committee related to oxygen fire investigations and design concerns to reduce the risk of an oxygen fire. There have been many recent technological advances and additional test data is available for evaluating and controlling combustion hazards in oxygen equipment. Standards that use this new information are rapidly evolving. A guide is needed to assist organizations and persons not completely familiar with this process to provide oxygen systems with minimum risks of combustion. This guide does not necessarily address all the detailed issues and provide all data that will be needed. For a complete analysis, supplemental publications need to be consulted. This guide does discuss the basics of oxygen systems fire hazards. The hazard analysis process is discussed and a simple example to explain this process.
Standard

Continuous Flow Oxygen Regulator

2023-08-23
CURRENT
AS1197B
This standard covers regulators of the following types: Type I - Automatic Continuous Flow Type II - Adjustable Continuous Flow Type III - Pre-Set Continuous Flow Class A - Cylinder Mounted Class B - Line Mounted
Standard

Oxygen System Maintenance Guide

2023-08-23
CURRENT
AIR1392A
This document is intended to give general instructions and directions for personnel performing maintenance and modification work on Oxygen Systems.
Standard

Aviator's Breathing Oxygen Purity Standard

2023-08-23
CURRENT
AS8010D
This document defines the minimum degree of purity and maximum levels of certain deleterious impurities allowable for aviator's breathing oxygen at the point of manufacture or generation. It covers gaseous, liquid, and chemically generated oxygen, and oxygen supplied by in situ concentration and in situ electrolysis. Different limits are established for oxygen from different sources, in recognition of differences in the ways the oxygen is stored, dispensed, and utilized, taking into account the safety of the user. These limits are not intended to specifically reflect upon the relative capabilities or merits of various technologies. Procurement documents may specify more stringent limits, where required for specific applications. Medical oxygen is not covered by this standard. In the United States, medical oxygen is a prescription drug and complies with the United States Pharmacopoeia (USP).
Standard

Minimum General Standards for Oxygen Systems

2023-05-10
CURRENT
AS861C
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplements the requirements of the detail specification or drawings of specific components or assemblies (e.g., regulators, masks, cylinders, etc.). Where a conflict exists between this standard and detail specifications, detail specifications shall take precedence.
Standard

Minimum Standards for Valve, High Pressure Oxygen, Cylinder Shut Off, Manually Operated

2023-04-26
CURRENT
AS1066B
This standard covers all types of manually operated high pressure oxygen, cylinder shut off valves for use in commercial aircraft. It is intended that the valve shall be attached to a pressure cylinder storing oxygen under a nominal pressure of 12.76 MPa (1850 psig) at 21 °C (70 °F). Upon opening the valve, oxygen will be permitted to discharge from the storage cylinder to the valve outlet and to other downstream components of the oxygen system. It shall also be possible to recharge the cylinder through the valve.
Standard

Protective Breathing Equipment for Flight Deck and Cabin Crew Members

2023-01-26
CURRENT
AIR825/10A
This SAE Aerospace Information Report (AIR) provides general information to aircraft engineers, regarding the types of Protective Breathing Equipment (PBE) configurations which are available, the intended functions of such equipment, and the technical approaches which may be used in accomplishing these functions. The term "PBE" or "Protective Breathing Equipment" has been used to refer to various types of equipment, which are used in a variety of applications. This way of using the terminology has been a source of confusion in the aviation industry. One objective of this AIR is to assist the reader in distinguishing between the types of PBE applications. A further objective is to assist in understanding the technical approaches which can be used in each of the major applications. Principles of PBE design are reviewed briefly.
Standard

Closed-Cycle Protective Breathing Devices

2023-01-26
CURRENT
AIR825/11A
Closed-cycle protective breathing apparatus, commonly referred to as rebreathers, or CCBA provide trained aircrew members or ground personnel with eye and respiratory protection from toxic atmospheres.
Standard

Reducers, Oxygen Pressure

2023-01-26
CURRENT
AS17852A
This specification covers the requirements for two types of oxygen pressure reducers.
Standard

Oxygen System Fill/Check Valve

2023-01-26
CURRENT
AS1225A
This SAE Aerospace Standard (AS) defines minimum standards of design, construction, and performance for two types of permanently installed, high pressure 12,800 kPa (1850 psig) and 13,800 kPa (2000 psig) oxygen system cylinder fill valves used in commercial aircraft. Refer to Purchaser's Specification for Requirements which are beyond the scope or level of detail provided in this document. One valve has an adjustable pressure sensitive closing valve to automatically control the final pressure for a correct amount of oxygen in the system. The second valve incorporates an automatic shutoff feature designed to limit system overpressurization in the event maintenance personnel do not stop system filling at the correct pressure. The intent of the fill valves is to control the rate of fill to limit the rise in temperature caused by compression heating to acceptable values, prevent oxygen back flow and prevent the ingestion of foreign matter that could cause contamination of the system.
Standard

Continuous Flow Oxygen Systems

2023-01-26
CURRENT
AIR825/8
This SAE Aerospace Information Report (AIR) provides general information on Continuous Flow Oxygen Systems which are available, principle functions of those systems and technical approaches to be taken into account during design and realization of systems. However, particular performance specifications and detailed information of manufacturing, testing and integration of such systems is beyond the scope of this document.
Standard

Demand Oxygen Systems

2023-01-26
CURRENT
AIR825/9
This SAE Aerospace Information Report (AIR) describes the general operating principles of demand oxygen equipment, including variant types such as diluter-demand and pressure breathing equipment. The sources of oxygen supply that can be used in connection with a demand oxygen mask are in principle the same as those used for other oxygen dispensing devices. Except for mention of a few features specifically related to demand equipment, this document does not discuss oxygen sources in detail and the reader is advised to consult other applicable documents that describe the operation of oxygen sources for additional information.
X