Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Evaluation Method of Thermal Sensation and Comfort for Air Conditioning Performance Reduction

2018-04-03
2018-01-0775
As a method of maintaining thermal sensation and comfort inside a passenger compartment, not only a conventional HVAC system but also a combination of a HVAC system and other devices such as seat heaters, a steering wheel heater, ventilation seats are increasing. This research developed a method to evaluate thermal sensation of a human body when using these various thermal control devices. This method can evaluate the heat balance of the human body by calculating the amount of heat exchange between a human body and the external environment, and it takes into consideration the influence of heat exchange by heat conduction with seats or a steering wheel. The human thermal model is made by dividing a human body into various segments, and it is the model that considers heat transport by blood flow for each segment.
Technical Paper

Development of High Capacity Lithium- Ion Battery for NISSAN LEAF

2012-04-16
2012-01-0664
Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. In order to achieve an improved driving range, power performance and dynamic performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and passive-cooled laminated Li-ion battery. Especially Nissan has been emphasizing electric powered technology with a focus on advanced lithium ion battery from 1992. This presentation will introduce the features of Nissan LEAF and its battery technologies.
Technical Paper

Development of New I3 1.2L Supercharged Gasoline Engine

2012-04-16
2012-01-0415
This paper describes a new 1.2-liter three cylinder gasoline engine named HR12DDR, with the target to achieve the lowest level CO2 in the European B-segment market and also, to satisfy the customer's driving pleasure through high output performance. This engine is developed with the consideration of meeting further strict regulations in the years ahead and of the possibility of being an alternative powertrain of diesel in the future as well. As a first step this engine was applied on the European Nissan Micra in 2011; achieving 95g/km CO2 emissions(NEDC mode). This low fuel consumption was realized mainly through technologies which scope to maximize thermal efficiency with high compression ratio, and to minimize the mechanical friction loss. The combustion was optimized by Direct injection (DI)system. To obtain the better fuel economy performance without sacrificing high output, we chose the supercharger system with bypass valve and electromagnetic clutch.
Technical Paper

Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine

2000-06-19
2000-01-1831
The mixture formation process in a premixed compression ignition engine was numerically analyzed. This study aimed to find out effective injection conditions for lean mixture formation with high homogeneity, since the NOx and soot emissions in the engine are closely related to the mixture homogeneity. To calculate fuel spray behavior, a practical computer code GTT (Generalized Tank and Tube) was employed. In a model for the premixed compression ignition engine, the effects of injection parameters, such as injection timing, initial droplet size, spray angle, injection velocity, nozzle type (pintle and hole) and injection position / direction, on the mixture homogeneity near ignition timing (or TDC) were investigated. To evaluate the homogeneity of the mixture, an index was defined based on the spatial distribution of fuel mass fraction. The fuel vapor mass fractions as well as the homogeneity indices, obtained as a function of time, were compared under various boundary conditions.
Technical Paper

The Nissan Hybrid Vehicle

2000-04-02
2000-01-1568
Technologies applied to the Nissan Tino Hybrid, marketed in March 2000, in Japan, are expected to evolve into the core powertrain technologies of the future, for the following technical advantages inherent to hybrid EVs: 1 Regeneration of deceleration energy 2 Motor driven propulsion at low speed, combined with power-assisted operation in the mid- and high-load ranges. It is expected that a number of models will be introduced to the market in the future, which pursue these advantages in various forms, resulting in HEV technologies to accelerate the use of electric power for the vehicle. Fuel cell vehicles will be included in this future scenario. In this paper, our view on the future HEV technologies will be described. In addition, the latest technologies applied to the Nissan Tino Hybrid will be introduced.
Technical Paper

Development of a Lithium-ion Battery System for HEVs

2000-03-06
2000-01-1057
This paper describes a high-power lithium-ion battery system that has been newly developed for application to hybrid electric vehicles (HEVs). The battery system was designed on the premise of an underfloor location so as to avoid sacrificing interior spaciousness while providing the power output and recharge performance required by the hybrid propulsion system. To meet these requirements, efforts were made to increase the specific power and to reduce the heat generation of the battery to previously unattained levels. As a result, exceptionally high specific power of 1,200 W/kg per cell, battery pack power of 25kW at 20% state of charge (SOC), and high charge/discharge efficiency of more than 95% in the urban driving schedule has been achieved. The battery pack is composed of two box-shaped modules designed with a low height in consideration of underfloor mountability.
Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Study of a High-Power Lithium-Ion Battery for Parallel HEV Application

1999-03-01
1999-01-1155
Our studies of the lithium-ion battery system have shown considerably more power capability than some existing batteries. Based on these results, we have developed a lithium-ion battery for parallel hybrid electric vehicle (PHEV) application. This battery system provides around ten times the specific power of conventional batteries and also achieves high recharging performance and high charge/discharge efficiency. Evaluation results indicate that it is a highly promising energy source for PHEVs.
Technical Paper

A Computational Investigation of Premixed Lean Diesel Combustion - Characteristics of Fuel-Air Mixture Formation, Combustion and Emissions

1999-03-01
1999-01-0229
The effects of fuel injection timing on fuel-air mixture formation, combustion and emissions for a PREmixed lean DIesel Combustion (PREDIC) engine has been studied numerically by the KIVA II modeling package. The software was modified with an improved autoignition and combustion submodel, which describes the formation of combustible or ignitable fuel-air mixtures by turbulent mixing, and describes four chemical reactions, including low-temperature oxidation. The results indicate that the present computational model reproduces major features of two-stage autoignition and experimentally observed trends in NO and unburned fuel emissions. The relationships among in-cylinder distributions of fuel sprays, fuel-air equivalence ratio, temperature and mass fractions of NO and unburned fuel were demonstrated by graphically imaged results. A method of fuel-air mixture characterization has been introduced and used to analyze the numerical results.
Technical Paper

Approaches to Solve Problems of the Premixed Lean Diesel Combustion

1999-03-01
1999-01-0183
Previous research in our laboratory has shown that NOx emissions can be sharply reduced by PREDIC (PRE-mixed lean DIesel Combustion), in which fuel is injected very early in the compression process. However some points of concern remained unsolved, such as a large increase in THC and CO, higher fuel consumption, and an operating region narrowly limited to partial loads, compared to conventional diesel operation. In this paper, the causes of PREDIC's problem areas were analyzed through engine performance tests and combustion observation with a single cylinder engine, through fuel spray observation with a high-pressure vessel, and through numerical modeling. Subsequently, measurable improvements were achieved on the basis of these analyses. As a result, the ignition and combustion processes were clarified in terms of PREDIC fuel-air mixture formation. Thus, THC and CO emissions could be decreased by adopting a pintle type injection nozzle, or a reduced top-land-crevice piston.
Technical Paper

Combustion and Emission Characteristics of Multiple Stage Diesel Combustion

1998-02-23
980505
A new diesel combustion concept termed MULDIC (MUL-tiple stage DIesel Combustion), which can reduce NOx emissions at high load conditions, was studied by means of engine tests, combustion observation, and numerical simulation. In MULDIC, the first stage combustion corresponds to premixed lean combustion, and the second stage combustion corresponds to diffusion combustion under high temperature and low oxygen conditions. The engine tests showed that simultaneous reduction of NOx and smoke could be obtained with MULDIC operation, even at an excess air ratio of 1.4. Fuel consumption was higher compared to conventional operation because of premature ignition of the first stage combustion and extremely late second stage injection. However, optimization of the first stage combustion increased the degree of constant volume combustion, and hence the thermal efficiency was increased.
Technical Paper

The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine

1998-02-23
980533
Previous research in our laboratory has shown that NOx emissions can be sharply reduced by PREDIC (PRE-mixed lean DIesel Combustion), in which fuel is injected very early in the compression process. However some problems still remain, such as higher fuel consumption, a lack of ignition timing control, and a large increase in THC and CO, compared to conventional diesel combustion. Appropriate mixture formation is necessary to solve these problems. In this paper, the influence of mixture formation on PREDIC was investigated. It was found that the pintle type injection nozzle was shown to be suitable for PREDIC, because it produced a comparatively uniform mixture in the combustion chamber and avoided collision of the fuel spray with the cylinder liner. Modeling by the KIVA-II software package was carried out to improve our understanding of the mixture formation process.
Technical Paper

Development of a Lithium-ion Battery System for EVs

1997-02-24
970238
This paper presents a lightweight, high-performance Lithium-ion Battery System developed jointly by Nissan Motor Co. and Sony Corp. for electric vehicle (EV) use. Electric vehicles are generally powered by a battery pack consisting of numerous cells connected in a series. Management techniques to elicit the maximum performance of the battery pack are needed, including a function for monitoring individual cells to prevent them from over-discharging. Because of high cell voltage, lithium-ion batteries enable the number of cells in a battery pack to be greatly reduced compared with other types of battery systems. They also allow accurate detection of the battery State of Charge (SOC) based on the battery voltage. These characteristics are conducive to the application of battery pack management technology. These concepts provided the basis for the development of a Lithium-ion Battery System for EV application.
Technical Paper

Structure of Sprays from an Air-Assist Hollow-Cone Injector

1996-02-01
960771
An Eulerian model of evaporating transient sprays and a new method to describe air-atomization near the injector exit to predict the mean size and velocity of droplets have been developed to study the influence of operating conditions of an air-assist hollow-cone injector and the influence of fuel atomization on the spray structure. Good agreement between the results of the computation and experiment in terms of spray shape has been achieved. The numerical results show the typical structure of sprays from the air-assisted fuel injector and show the influence of atomization on the structure.
Technical Paper

Development of Door Guard Beams Utilizing Ultra High Strength Steel

1981-02-01
810031
Door guard beams have been developed through the utilization of ultra high strength steel (tensile strength>100 kg/mm2). At first, the sheet metal gauge was reduced in proportion to the strength of the ultra high strength without changing the shape of the beam section. This caused beam buckling and did not meet guard beam specifications. Analyzing this phenomena in accordance with the buckling theory of thin plates, a design criteria that makes effective use of the advantages of ultra high strength was developed. As a result, our newly designed small vehicle door guard beams are 20% lighter and 26% thinner than conventional ones. This makes it possible to reduce door thickness while increasing interior volume.
X