Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Influence to the PN Emissions in Calibration Procedure for Portable and Stationary Solid Particle Number Measurement Systems

2019-12-19
2019-01-2196
The Real Diving Emissions (RDE) regulation has been introduced since September, 2017 by utilizing the Portable Emissions Measurement System (PEMS). For the PEMS for the solid Particle Number (PN) measurement (PN-PEMS), the validation tests are required by comparing to the stationary PN measurement system on a chassis dynamometer prior to the on-road emissions testing. However, there are some cases that the emission results of PN-PEMS have big difference for that of the PMP system as the PN-PEMS does not have the same system configuration and calibration procedures as a PMP system. In this paper, the influence of the calibration procedure to the PN emissions results was observed by applying the calibration procedure of the PN-PEMS to the PMP system. The current systems configurations for PMP system and PN-PEMS, and the differences of them were described. And, the calibration procedure of the PN-PEMS was applied to the PMP system to adjust the system detection efficiency at 23 nm.
Technical Paper

Influencing Factors on Calibration of Solid Particle Number Counting System for European PN Emission Regulations

2011-08-30
2011-01-2054
The European Union has announced the next term emission regulations for light-duty vehicles which include particle number (PN) emission standards. The protocol for PN counting for the regulation is described in UNECE Regulation No.83. The PN counting system required for this regulation should consist of a Volatile Particle Remover (VPR) and a Condensation Particle Counter (CPC). The regulation also requires calibration of the VPR's Particle Concentration Reduction Factor (PCRF) periodically. Since the PCRF is directly used in the calculation of PN emission, an improper calibration of the factor can cause a significant error of PN emission result. This paper investigates propriety to use NaCl particles generated by atomizing method in the PCRF calibration as reference particles. As a result, it is shown that the NaCl particles can be used in PCRF calibration because of the sufficient stability when appropriate thermal treatment is applied.
Technical Paper

Soot Emission Behavior from Diverse Vehicles and Catalytic Technologies Measured by a Solid Particle Counting System

2007-04-16
2007-01-0317
A Solid Particle Counting System (SPCS) has been developed according to the ECE draft regulation proposed by the particle measurement program (PMP). In the previous report the basic performance of the SPCS has been mentioned in detail [1, 2, 3, 4, 5 and 6]. It has been reported that the SPCS demonstrates very stable dilution of sample with air and the error of real time dilution factor is less than 6% up to the total dilution factor of 1000. Penetration of solid particles through the SPCS is over 95% and volatile particles removal efficiency is over 99%. In this study the SPCS has been used to investigate the soot emission behavior from different vehicles with different after-treatment technologies. Direct injection (DI) diesel vehicles without diesel particulate filter (DPF), and with different DPFs (catalyzed and non-catalyzed) have been tested. Direct injection gasoline (DIG) vehicle with oxidation and NOx reduction catalysts have also been tested.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Technical Paper

Real-Time Measuring System for Engine Exhaust Solid Particle Number Emission - Performance and Vehicle Tests

2006-04-03
2006-01-0865
The prototype solid particle counting system (SPCS) has been used to study solid particle emission from gasoline and diesel vehicles. As recommended by the PMP draft proposal, exhaust is diluted by a Constant Volume Sampler (CVS). The SPCS takes the sample from the CVS tunnel. Transient test cycles such as EPA FTP 75, EPA HWFET (EPA Highway Fuel Economy Cycle), and NEDC (New European Driving Cycle) were tested. The repeatability of the instrument was evaluated on the diesel vehicle for three continuous days. The instrument exhibits good repeatability. The differences for the EPA ftp 75, the EPA HWFET, and the NEDC in three continuous tests are ± 3.5%. The instrument is very sensitive as well and detects the driving differences. A large number of solid particles are found during the hard acceleration from both the gasoline and the diesel vehicles. Solid particle emissions decrease quickly at deceleration and when vehicles approach constant speed.
Technical Paper

A New Concept for Real-Time Measurement of Particulate Matter (Soot and SOF)

2005-11-01
2005-01-3605
Measurements of soot and SOF emitting from automobile engines by conventional gravimetric method and soxhlet extraction method are difficult and time-consuming processes. The composition in the filter substrate may change during time-consuming analysis. Therefore an accurate and real time measurement method for particulate matter is the key demand for automobile industry. This paper describes a new concept for analyzing PM, which includes measurement of soot and SOF separately, as well as the total PM emission from automobile engine continuously. The concept comprises of the real-time measurement of soot emission with a diffusion charger (DC) combined with a specific dilution system. A differential flame ionization detector with separate sample line temperatures (47°C and 191°C), have been applied for the SOF measurement. The total PM is then expressed as the sum of soot and SOF mass.
X