Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A methodology to develop and validate a 75-kWh battery pack model with its cooling system under a real driving cycle.

2024-06-12
2024-37-0012
A major issue of battery electric vehicles (BEV) is optimizing driving range and energy consumption. Under actual driving, transient thermal and electrical performance changes could deteriorate the battery cells and pack. These performances can be investigated and controlled efficiently with a thermal management system (TMS) via model-based development. A complete battery pack contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. However, such an early modeling stage requires detailed cell geometry and specifications to estimate the thermal and electrochemical energies of the cell, module, and pack. To capture the dynamic performance changes of the LIB pack under real driving cycles, the thermal energy flow between the pack and its TMS must be well predicted. This study presents a BTMS model development and validation method for a 75-kWh battery pack used in mass-production, mid-size battery SUV under WLTC.
Technical Paper

A Study on Optimizing SHEV Components Specifications and Control Parameter Values for the Reduction of Fuel Consumption by Using a Genetic Algorithm

2022-03-29
2022-01-0655
For a series hybrid electric vehicle (SHEV), the electric motor is responsible for driving the wheels, while the engine drives the only generator to provide electricity. SHEVs set a control strategy to make the engine run near the fixed operating point with high thermal efficiency, thereby effectively reducing fuel consumption. The powertrain system of HEV is more complex than that of a conventional drive system using only an internal combustion engine, and it is time-consuming to obtain the optimal components specification values and control parameters. Therefore, automatic optimization methods are required nowadays. We used Genetic Algorithm (GA) as the optimization method and optimize powertrain specifications and control parameter values to reduce fuel consumption. The results show that it is an effective optimization method.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Technical Paper

Development of a New Regenerative Braking System

2013-10-15
2013-32-9006
Our new technology, the first technology in the small vehicle industry, achieves the fuel economy improvement due to the electricity through the highly efficient electricity generation and charge by the regenerative braking energy obtained during vehicle decelerating or coasting. The newly developed technologies is the regenerative braking system, which minimizes electricity generation during vehicle driving, while maximizes it during vehicle decelerating or coasting. Regenerative braking is the function to generate electric power using with the regenerative braking energy obtained during vehicle decelerating or coasting through the accelerator pedal released or the brake pedal applied. The kinetic energy from the vehicle in motion is recaptured as the electric power to be used for the electric component operation.
Technical Paper

Effects of Fuel Spray Characteristics on Smoke Emissions in a Small-Displacement Spark-Ignition Direct-Injection

2007-08-05
2007-01-3492
Significant advancements have been made in recent years in the development of combustion system for spark-ignition direct-injection engine (SIDI) engine, which have resulted in fuel economy saving, low exhaust emission and a significant power advantage under homogeneous fuel operation, compared to equivalent PFI (Port Fuel Injection) engines. Key challenge for small-displacement SIDI engine, which has short path lengths between the injector and piston and is therefore prone to increase wall wetting, is minimizing or eliminating the amount of wall wetting to reduce smoke emission. A side-injection system also requires sufficient spray penetration to fully transport fuel to the centrally mounted spark plug at the desired injection timing event.
Technical Paper

Experimental Study of Smoke Emission on Small-Displacement Spark-Ignition Direct-Injection Engine

2006-11-13
2006-32-0105
The present turbo-charged direct injection 660cm3 engine achieves low engine-out emissions and low fuel consumption with high engine output because of synergies of direct injection combined with turbo-charging. The fuel mixture in the combustion chamber is slightly stratified and is slightly richer than stoichiometric in the vicinity of the spark plug at the time of ignition, thereby yielding stable combustion. This reduces the unburned HC at cold start operation and makes is possible to retard spark timing at cold start operation, which activates the catalyst quicker and reduces exhaust emissions. Also, the stable combustion allows introduction of higher EGR(Exhaust Gas Recirculation) rates, which reduces NOx emission and improves fuel economy resulting from low pumping loss. Due to charge cooling, the compression ratio can be increased, which has inherent fuel economy advantage as well.
Technical Paper

Development of a 660cc Turbo-Charged Spark-Ignition Direct-Injection Engine

2003-09-15
2003-32-0013
A new 660cc turbo-charged Spark-Ignition Direct-Injection (SIDI) engine was developed. The mini-car equipped with this engine is the first mini-car with a turbocharged SIDI engine to receive the Japanese Ultra-Low-Emission-Vehicle (ULEV) certification. The vehicle achieved a 5.7% fuel economy improvement on the Japanese 10-15 mode compared to the mini-car equipped with the baseline port fuel injection (PFI) engine. The baseline engine is currently used for both the mini-car and snow mobile vehicles, and it is feasible to expand the SIDI engine application to also cover snow mobile applications, and achieve the demonstrated benefits of low emission, low fuel consumption and high engine output
Technical Paper

21 Development of a Small Displacement Gasoline Direct Injection Engine

2002-10-29
2002-32-1790
We have developed a small-displacement gasoline direct-injection engine (1.3L). Gasoline direct-injection engines rely on ultra-lean stratified combustion to deliver significantly better fuel economy, and are already used in many practical applications. When gasoline direct-injection is applied to a small-displacement engine, however, the amount of wall wetting of fuel on the piston surface will increase because the traveled length of the fuel spray is short. This may result in problems such as smoke production, high emissions of unburned HC, and poor combustion efficiency.
X