Refine Your Search

Search Results

Author:
Technical Paper

Improved Titanium Machining: Modeling and Analysis of 5-Axis Tool Paths via Physics-Based Methods

2009-11-10
2009-01-3131
Manufacturing of monolithic aerospace components entails development of complicated 5-axis tool paths containing thousands of lines of code and dozens of tool changes for milling and drilling operations. In-cut machining cycle times of 50-100 hours are common. Achieving meaningful reduction of cycle time while maintaining part quality is predicated upon the ability to model the physics of the machining operations. A methodology to predict forces used for analyzing large, complicated 5-axis tool paths for aerospace component machining is presented. The ability to accurately model length scales from the chip load (∼100 microns), part thickness (∼2mm), depths of cut (∼10mm) to part dimensions (∼10m) is provided. Forces and temperatures are predicted over the entire tool path using analytical and numerical techniques to extend an empirical database to generalized cutting conditions.
X