Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Contribution of 3D Printing in Tooling and Portable Tools Application Case for a Smart Driller

2016-09-27
2016-01-2127
The recent contribution rise in 3D printing is rapidly changing the whole industry. In aeronautics, it has 2 major domains of growth: Aircraft parts Tooling and portable tools Aircraft parts in metallic 3D printing have been highly publicized in the media, although they represent only a tiny share of the aircraft cell in the short term. On the other hand, metallic (and non-metallic) 3D printing in tooling and tools can bring immediate advantages compared to traditional methods. The advantages: Design made directly for the final function Optimized for strength vs weight Weight reduction Reduction in number of parts Short cycle time from design to use Low cost for customization The drawbacks Limited in size We have already applied this new manufacturing technique to obtain real breakthroughs in portable tools.
Technical Paper

A breakthrough in handheld Smart Drilling Units : Material detection with advanced electrical drilling

2015-09-15
2015-01-2490
The quality requirement for drilling operation in aerospace industry associated to the different material layers of the recent aircraft design is one of the most challenging issues for manufacturing engineers who want to design system for one-shot drilling operation. We have developed and validated in production a handheld electrical tool which is able to accurately monitor the drilling parameter and to adjust the drilling conditions to specific material in the stack-up. This “Smart Driller” achieves quality and performances equivalent to those obtained by the most advanced heavy automated drilling systems at a small portion of weight and cost.
Technical Paper

Automated Assembly of Aircraft Structures at Avcorp Industries Inc., Aerostructures Division

1999-10-06
1999-01-3427
Avcorp Industries Inc. recognized the need to reduce assembly labor costs in order to stay competitive with global competition. After two years of research and investigation it was determined that a joint project with Dassault Aviation provided the most viable solution. The key elements of the technology developed by Dassault were its high flexibility and rapid payback of capital investment. This paper describes the system and the application. The structure’s design and robotic system design were performed in parallel. A number of design challenges had to be overcome. Many of these issues encountered were common to any automated assembly application. By covering these challenges Avcorp was able to introduce automated assembly at a level that had typically been previously attained exclusively by much larger enterprises. The robotic system consists of two anthropomorphic robots, which work both individually and in tandem.
X