Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Parametric Study of Head Impact in the Infant

2007-10-29
2007-22-0001
Computer finite element model (FEM) simulations are often used as a substitute for human experimental head injury studies to enhance our understanding of injury mechanisms and develop prevention strategies. While numerous adult FEM of the head have been developed, there are relatively few pediatric FEM due to the paucity of material property data for children. Using radiological serial images of infants (<6wks old) and recent published material property data of infant skull and suture, we developed a FEM of the infant head to study skull fracture from occipital impacts. Here we determined the relative importance of brain material properties and anatomical variations in infant suture and scalp tissue on principal stress (σp) estimates in the skull of the model using parametric simulations of occipital impacts from 0.3m falls onto concrete.
Technical Paper

In Vivo Measurements of Human Brain Displacement

2004-11-01
2004-22-0010
Finite element models are increasingly important in understanding head injury mechanisms and designing new injury prevention equipment. Although boundary conditions strongly influence model responses, only limited quantitative data are available. While experimental studies revealed some motion between brain and skull, little data exists regarding the base of the skull. Using magnetic resonance images (MRI) of the caudal brain regions, we measured in vivo, quasi-static angular displacement of the cerebellum (CB) and brainstem (BS) relative to skull, and axial displacement of BS at the foramen magnum in supine human subjects (N=5). Images were obtained in flexion (7° – 54°) and neutral postures using SPAMM tagging technique (N=47 pairs). Rigid body skull rotation angle from neutral posture (θ, degrees) was determined by extracting the edge feature points of the skull, and rotating and displacing the coordinates in one image until they matched those in the other.
Technical Paper

Pediatric Rotational Inertial Brain Injury: the Relative Influence of Brain Size and Mechanical Properties

1999-10-10
99SC23
Head injury is the most common cause of death and acquired disability in childhood. We seek to determine the influence of brain mechanical properties on inertial pediatric brain injury. Large deformation material properties of porcine pediatric and adult brain tissue were measured and represented by a first-order Ogden hyperelastic viscoelastic constitutive model. A 3-D finite element mesh was created of a mid-coronal slice of the brain and skull of a human adult and child (2 weeks old). Three finite element models were constructed: (1) a pediatric mesh with pediatric brain properties, (2) a pediatric mesh with adult tissue properties, and (3) an adult mesh with adult tissue properties. The skull was modeled as a rigid solid and an angular acceleration was applied in the coronal plane with center at C4/C5. The brain is assumed to be homogeneous and isotropic.
Technical Paper

Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury

1998-11-02
983154
Traumatic brain injury finite element analyses have evolved from crude geometric representations of the skull and brain system into sophisticated models which take into account distinct anatomical features. However, two distinct finite element modeling approaches have evolved to account for the relative motion that occurs between the skull and cerebral cortex during traumatic brain injury. The first and most common approach assumes that the relative motion can be estimated by representing the cerebrospinal fluid inside the subarachnoid space as a low shear modulus, virtually incompressible solid. The second approach assumes that the relative motion can be approximated by defining a frictional interface between the cerebral cortex and dura mater. This study presents data from an experimental model of traumatic brain injury coupled with finite element analyses to evaluate the modeling approach's ability to predict specific forms of traumatic brain injury.
Technical Paper

Regional Differences in Mechanical Properties of the Porcine Central Nervous System

1997-11-12
973336
Computational modeling is a potentially powerful tool to provide information about the mechanisms of traumatic brain injury. In order to ensure that the estimates calculated by these computer models provide the most useful information, it is essential that these models contain accurate central nervous system (CNS) tissue properties. Previous material property measurements lack strict control over crucial experimental parameters that may influence material properties and tail to examine any regional variation in the measured response. To address these issues, we measured the material response of two regions of the CNS, the brainstem and the cerebrum. Specifically, adult porcine tissue was subjected to high loading rate mechanical deformation using a custom designed oscillatory shear device. Complex shear moduli were calculated over a range of frequencies (20-200 Hz) at two engineering strain amplitudes (2.5%, and 5.0%).
X