Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

A Reduced Chemical Kinetic Model for Autoignition of the Butanes

1996-10-01
962106
A reduced chemical kinetic model by Li et al. [1]* for predicting primary reference fuels' reactivity and autoignition behavior was modified to apply to the butanes, and it was correlated to experimental results from the non-fired engine cycles under skip fired conditions. The fuels examined in this work were neat n-butane and n-butane/iso-butane blends (10, 20, and 48 percent by volume iso-butane). In our initial work using measured pressure data from the first skip cycle, we modified Li et al.'s model by only adjusting the fuel specific rate parameters of the alkylperoxy radical (RO2·) isomerization reaction, the reaction of aldehydes with OH·, and the reaction forming cyclic ethers. In this work, analysis was extended to the second skip cycle and additional oxidation rate parameters with high fuel sensitivity were adjusted. Several reactions, which are not significant in butane oxidation, were temporarily made to be inactive in the model.
Technical Paper

Prediction of Preignition Reactivity for n-Butane and iso-Butane Blends Using a Reduced Chemical Kinetic Model

1996-05-01
961154
Recently, we reported the development of a new reduced chemical kinetic model for predicting reactivity and autoignition behavior of primary reference fuels in a motored research engine. The predicted oxidation behavior (ignition delay, preignition heat release, and evolution of key chemical species) is in fairly good agreement with experiments. In addition, the model reproduced the experimentally observed dependence of overall reactivity on charge density and manifold inlet conditions. This paper reports our initial effort to apply this new reduced chemical kinetic model to other fuels. Specifically, the model was tested using neat n-butane and n-butane/iso-butane blends (10, 20, and 48 percent by volume iso-butane) under skip fired conditions. The only adjustments made in the model were to the fuel specific rate parameters of the RO2· isomerization reaction, the reaction of aldehydes with OH·, and the reaction forming cyclic ethers.
X