Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Simulation of a Two-Stroke Linear Engine-Alternator Combination

1999-03-01
1999-01-0921
Series hybrid electric vehicles (HEVs) require power-plants that can generate electrical energy without specifically requiring rotary input shaft motion. A small-bore working prototype of a two-stroke spark ignited linear engine-alternator combination has been designed, constructed and tested and has been found to produce as much as 316W of electrical energy. This engine consists of two opposed pistons (of 36 mm diameter) linked by a connecting rod with a permanent magnet alternator arranged on the reciprocating shaft. This paper presents the numerical modeling of the operation of the linear engine. The piston motion of the linear engine is not mechanically defined: it rather results from the balance of the in-cylinder pressures, inertia, friction, and the load applied to the shaft by the alternator, along with history effects from the previous cycle. The engine computational model combines dynamic and thermodynamic analyses.
Technical Paper

Fundamental Analysis of a Linear Two-Cylinder Internal Combustion Engine

1998-10-19
982692
Linear, crankless, internal combustion engines may find application in the generation of electrical power without the need to convert linear to rotary motion. The elimination of the connecting rod and crankshaft would significantly improve the efficiency of the engine and the reduced weight and cost is an added advantage. The case of two opposed cylinders, with two pistons linked by a solid rod, was considered for idealized modeling. The piston/rod assembly was considered to oscillate with only constant frictional drag. The Otto cycle was used to model efficiency, and this in turn determined compression ratio. Dimensionless groups governing the engine working were identified and used in formulating a description of the engine behavior. Two-stroke operation was assumed. Velocity and position can be related analytically to yield a phase plot.
X