Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

SULEV and “Off-Cycle” Emissions Benefits of a Vacuum-Insulated Catalytic Converter

1999-03-01
1999-01-0461
In previous SAE papers, the initial development and testing of a vacuum-insulated catalytic converter was presented. This paper provides an update of the converter development and an analysis of potential off-cycle emissions savings. Hot vibration, cool-down, and 1975 Federal Test Procedure (FTP-75) emissions test results are provided to demonstrate the effectiveness of design improvements in greatly increasing durability while retaining performance. Using standard drive cycles and “real-world” driving statistics with a vehicle simulator (ADVISOR©), catalyst temperature and vehicle exhaust emissions of a sport utility vehicle (SUV) were predicted for 16 days of driving (107 trips, 770 total miles). Compared to the baseline vehicle with a conventional catalytic converter, the SUV with a vacuum-insulated converter produced 66% less non-methane hydrocarbon (NMHC), 65% less carbon monoxide (CO), and 60% less oxides of nitrogen (NOx).
Technical Paper

Applications and Benefits of Catalytic Converter Thermal Management

1996-05-01
961134
A catalytic converter thermal management system (TMS) using variable-conductance vacuum insulation and phase-change thermal storage can maintain the converter temperature above its operating temperature for many hours, allowing most trips to begin with minimal “cold-start” emissions. The latest converter TMS prototype was tested on a Ford Taurus (3.0 liter flex-fuel engine) at Southwest Research Institute. Following a 24-hour soak, the FTP-75 emissions were 0.031, 0.13, and 0.066 g/mile for NMHC, CO, and NOx, respectively. Tests were also run using 85% ethanol (E85), resulting in values of 0.005, 0.124, and 0.044 g/mile, and 0.005 g/mile NMOG. Compared to the baseline FTP levels, these values represent reductions of 84% to 96% for NMHC, NMOG, and CO.
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
Technical Paper

Thermal Analysis and Testing of a Vacuum Insulated Catalytic Converter

1994-10-01
941998
Based on a recent U.S. Environmental Protection Agency (EPA) study, about 95% of all trips start after a cold-soak period of 16 hours or less. By preserving the heat in the catalyst between trips, exhaust gases could be processed without warm-up delay and without the usual cold-start emissions. Vacuum insulation and phase-change thermal storage have been incorporated into a catalytic converter design to enhance its heat-retention time. Laboratory testing of a bench-scale prototype showed that a “light off” temperature (above 350°C) could be maintained during a 10-hour cold soak. Design improvements currently being tested should increase this heat-retention time to more than 16 hours. The thermal conductance of the vacuum insulation will be made continuously variable to prevent overheating and excessive thermal cycling. This approach to thermal management may be more durable and less costly than quick-heat methods using electric or fuel-fired preheat catalysts.
Technical Paper

Use of Infra-Red Thermography for Automotive Climate Control Analysis

1993-04-01
931136
In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques.
X