Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Comparison of Exhaust Emissions from a Vehicle Fueled with Methanol-Containing Additives for Flame Luminosity

1993-03-01
930220
Two additive blends proposed for improving the flame luminosity in neat methanol fuel were investigated to determine the effect of these additives on the exhaust emissions in a dual-fueled Volkswagen Jetta. The two blends contained 4 percent toluene plus 2 percent indan in methanol and 5 percent cyclopentene plus 5 percent indan in methanol. Each blend was tested for regulated and unregulated emissions as well as a speciation of the exhaust hydrocarbons resulting from use of each fuel. The vehicle exhaust emissions from these two fuel blends were compared to the Coordinating Research Council Auto-Oil national average gasoline (RF-A), M100, and M85 blended from RF-A. Carter Maximum Incremental Reactivity Factors were applied to the speciated hydrocarbon emission results to determine the potential ozone formation for each fuel. Toxic emissions as defined in the 1990 Clean Air Act were also compared for each fuel.
Technical Paper

Laboratory Evaluation of Additives for Flame Luminosity Improvement in Neat Methanol Fuel

1993-03-01
930379
Neat methanol fuel (M100) has many advantages for achieving low emission levels as an automotive fuel, but there are several items that require attention before this fuel can replace conventional fuels. One item involves the low flame luminosity of methanol. An extensive literature search and laboratory evaluation were conducted to identify potential additive candidates to improve the luminosity of a methanol flame. Potential compounds were screened based on their concentration, luminosity improvement, and duration of luminosity improvement during the burn. Three compounds were found to increase the flame luminosity for segments of the burn at relatively low concentrations: toluene, cyclopentene, and indan. In combination, these three compounds markedly improved the luminosity of methanol throughout the majority of the burn. The two combinations were 1) 4 percent toluene plus 2 percent indan and 2) 5 percent cyclopentene plus 5 percent indan in methanol.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Electrically-Heated Catalyst System Conversions on Two Current-Technology Vehicles

1991-02-01
910612
Two different configurations of electrically-heated catalyst systems were installed on two new production vehicles. A 1990 Buick LeSabre was evaluated with a heated catalyst placed directly in front of the main production catalytic converter while a 1990 Toyota Celica was evaluated with an electrically-heated catalyst placed between the main close-coupled catalytic converter and a smaller downstream production catalytic converter. Initial laboratory studies involved examination of heating strategies to minimize electrical energy requirements, a variety of off-board battery and recharging configurations for their effect on emissions, and multiple air injection strategies to achieve minimum hydrocarbon emissions while avoiding a NOx penalty. Final efforts involved installation of optimized, complete on-vehicle electrically-heated catalyst systems for subsequent on-road mileage accumulation.
X