Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Occupant Model Correlation Using a Genetic Algorithm

2004-03-08
2004-01-1624
Computer modeling has played important roles and gained great momentum in product development as numerical methods, computer software and hardware technologies advance rapidly. Computer models (e.g. MADYMO) that simulate vehicle interior, restraint system and occupants in various crash modes have been widely used to improve occupant safety. However, to build good occupant models, engineers often have to spend tremendous time on model correlation. The challenge of model correlation for occupant safety is that it requires matching numerous injury curves with tests, for examples: head G, chest G, chest deflection, shoulder belt load, femur loads, neck load and moment. Traditionally, this model correlation task is done by a trial and error method. This paper attempts to solve the problem systematically by using a genetic algorithm. It demonstrates that the genetic algorithm is a valuable optimization tool to obtain a high quality MADYMO model.
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
X