Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Diesel Spray Penetration and Velocity Measurements

2008-10-06
2008-01-2478
This study is presenting a comparative spray study of modern large bore medium speed diesel engine common rail injectors. One subject of paper is to focus on nozzles with same nominal flow rate, but different machining. The other subject is penetration velocity measurements, which have a new approach when trying to understand the early phase of transient spray. A new method to use velocimetry for spray tip penetration measurements is here introduced. The length where spray penetration velocity is changed is found. This length seems to have clear connection to volume fraction of droplets at gas. These measurements also give a tool to divide the development of spray into acceleration region and deceleration region, which is one approach to spray penetration. The measurements were performed with backlight imaging in pressurized injection test rig at non-evaporative conditions. Gas density and injection pressure were matched to normal diesel engine operational conditions.
Technical Paper

NOx Reduction in a Medium-Speed Single-Cylinder Diesel Engine using Miller Cycle with Very Advanced Valve Timing

2009-09-13
2009-24-0112
The objective of this study is to achieve high reduction of NOx emissions in a medium-speed single-cylinder research engine. The main feature of this research engine is that the gas exchange valve timing is completely adjustable with electro-hydraulic actuators. The study is carried out at high engine load and using a very advanced Miller valve timing. Since the engine has no turbocharger, but a separate charge air system, 1-D simulations are carried out to find the engine setup, which would be close to the operating points of a real engine. The obtained NOx reduction is over 40% with no penalty in fuel consumption.
Technical Paper

Performance Simulation of a Compression Ignition Free Piston Engine

2001-03-05
2001-01-0280
A dual-piston, two-stroke, compression ignition free piston engine has been simulated with zero- and one-dimensional performance simulation codes. The simulation models used in the codes have been developed to analyze and improve the internal combustion engine process of a hydraulic free piston engine prototype. The prototype was designed and constructed in Tampere University of Technology at the Institute of Hydraulics and Automation. Performance simulation analyses were conducted in Helsinki University of Technology at the Internal Combustion Engine Laboratory. The zero-dimensional model is used for the simulation of piston dynamics. The one-dimensional model is used for performance simulation, especially for the simulation of gas exchange process. The simulation results were verified through prototype engine measurements.
X