Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Double Compression Expansion Engine Concepts: A Path to High Efficiency

2015-04-14
2015-01-1260
Internal combustion engine (ICE) fuel efficiency is a balance between good indicated efficiency and mechanical efficiency. High indicated efficiency is reached with a very diluted air/fuel-mixture and high load resulting in high peak cylinder pressure (PCP). On the other hand, high mechanical efficiency is obtained with very low peak cylinder pressure as the piston rings and bearings can be made with less friction. This paper presents studies of a combustion engine which consists of a two stage compression and expansion cycle. By splitting the engine into two different cycles, high-pressure (HP) and low-pressure (LP) cycles respectively, it is possible to reach high levels of both indicated and mechanical efficiency simultaneously. The HP cycle is designed similar to today's turbo-charged diesel engine but with an even higher boost pressure, resulting in high PCP. To cope with high PCP, the engine needs to be rigid.
Technical Paper

Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-Cylinder Electronic Valve Control Engine

2003-03-03
2003-01-0753
Operating an engine in homogeneous charge compression ignition (HCCI) mode requires the air fuel mixture to be very lean or highly diluted with residuals. This is in order to slow the kinetics down and to avoid too rapid heat release. Consequently, the operational window for the engine in HCCI mode is not the same as for the engine operating in spark ignited (SI) mode. Homogeneous charge compression ignition engine mode, in this study, is accomplished by trapping residual mass using variable valve timing. With the residual trapping method, the engine cannot be started in HCCI mode and due to the dilution, the engine in HCCI mode can only be operated in the part - load regime. Hence, a mode change between spark ignited and HCCI modes, and vice versa is required. This study reports the development of a mode change strategy for a single cylinder camless engine, and its successful implementation in a camless multi cylinder engine.
Technical Paper

Deterioration of Three-Way Automotive Catalysts, Part I - Steady State and Transient Emission of Aged Catalyst

1993-03-01
930937
Five field-aged catalysts with different mileages were analysed with respect to emission performance and structural changes. The FTP-75 emission results were compared to synthetic exhaust gas tests including: i) light-off, ii) lambda screening at stationary and oscillating stoichiometry, iii) space velocity variation. Several samples from different positions of one catalyst were used to achieve the spatially resolved activity profile for that catalyst. Surface characterisation was used to characterise accumulated catalyst poison. Laboratory space velocity test was concluded to be a sensitive probe for catalyst performance: good correlation to vehicle emission data was found. An analysis of the influence of temperature and λ oscillation on the catalyst conversion performance was made, with particular emphasis on the ageing effects.
Technical Paper

Deterioration of Three-Way Automotive Catalysts, Part II - Oxygen Storage Capacity at Exhaust Conditions

1993-03-01
930944
Catalysts aged under different on-road conditions were analysed with respect to their conversion of CO and HC at step changes of the synthetic exhaust gas composition. Time resolved diode laser spectroscopy and fast response FID analysis were used to characterise the catalyst response to transient changes of CO and hydrocarbons in the exhaust gas. The oxygen storage capacity was monitored at various conditions; flow rate, catalyst temperature, previous exposure to oxidizing or reducing atmosphere and amplitude of the perturbation. The technique appeared to provide a sensitive probe for analysis of the dynamic oxygen storage capacity of new and aged catalysts at exhaust like conditions. The results correlate well with the transient emission performance during vehicle tests. Further, surface characterization using SEM/EDS and XPS techniques indicated that phosphate formation was the most probable cause of deactivation.
Technical Paper

Spatially Resolved Effects of Deactivation on Field-Aged Automotive Catalysts

1991-02-01
910173
Four samples from each of two field-aged catalysts subjected to different field test conditions were investigated. The light-off and conversion performance of each sample was measured in a synthetic exhaust flow reactor system. Time-resolved laser IR spectroscopy was used to investigate the catalyst behaviour under transient conditions. Significant differences in light-off temperatures and transient conversion performance between the samples was observed. The samples taken from the inlet side of the monolith were more deactivated than the corresponding ones from the outlet. However, samples taken from peripheral positions always showed better performance than samples originating from the centre. In order to explain observed variations in activity, the following surface properties were examined: oxygen uptake, specific metal area (CO chemisorption), total surface area (BET) and chemical composition (XPS analysis).
Technical Paper

Thermal Deactivation of a Three-Way Catalyst: Changes of Structural and Performance Properties

1990-02-01
900273
A standard commercial three-way catalyst was aged at 950°C for 24 hours in dry N2 with 2% O2. The performance of the aged and a fresh samples were characterized using a synthetic exhaust flow system. The light-off temperature for all three pollutants on the aged sample was more than 70°C higher than for the fresh one. The effect of aging on steady-state performance at higher temperatures (>400°C) was more moderate. In order to explain the decrease in activity the samples were analysed for their bulk and surface composition using electron microscopy (TEM/STEM/EDS), photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). In addition the precious metal dispersion were determined by CO chemisorption and the total area by standard BET measurement. TEM micrographs showed that the metal particles containing platinum had an average diameter between 3-4 nm in the fresh sample but grow considerably in size upon aging.
X