Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Modular Medical Evacuation Fixture for Use in Military and Disaster Response Vehicles

2007-04-16
2007-01-1767
This study presents a design concept for a multi-configuration modular medical evacuation fixture that can be used to retrofit standard utility vehicles for emergency medical transport. The fixture has been designed so that when installed in a vehicle and configured for litter transport, it provides mounting structure for a single patient on a North Atlantic Treaty Organisation (NATO) style litter as well as for a variety of emergency medical equipment. When installed in a vehicle and configured for ambulatory patient transport, the device provides safe seating for multiple patients as well as mounting surfaces for medical equipment. When not installed, the fixture can be collapsed for ease of shipping and warehousing. A survey of potential host vehicles was conducted to evaluate the feasibility of the proposed design. Given a preliminary concept, factors such as expected patient anthropometry, and physical data of medical equipment were used to perform basic structural analyses.
Technical Paper

Biomechanical Injury Evaluation of Laminated Glass During Rollover Conditions

2002-03-19
2002-01-1446
Significantly, more fatalities and serious injuries occur due to ejection in roll over accidents. The present study was conducted to determine the occupant retention and head-neck injury potential aspects of laminated glass in roll over accidents. The head injury and neck parameters were obtained from Hybrid III 50% male dummy test device impacting on various types of side windows with laminated glass. Results indicated that the glass contained the dummy assembly and the head neck biomechanical parameters were below the critical value injury tolerance limits in simulated rollover accidents.
Technical Paper

Biomechanical Assessment of Human Cervical Spine Ligaments

1998-11-02
983159
There is an increasing need to accurately define the soft tissue components of the human cervical spine in order to develop and exercise mathematical analogs such as the finite element model. Currently, a paucity of data exists in the literature and researchers have constantly underscored the need to obtain accurate data on cervical spine ligaments. Consequently, the objective of the study was to determine the geometrical and biomechanical properties of these ligaments from the axis to the first thoracic level. A total of thirty-three human cadavers were used in the study. Geometrical data included the length and cross-sectional area measurements; and the biomechanical properties included the force, deflection, stiffness, energy, stress, strain, and Young's modulus of elasticity data. Data were obtained for the following ligaments: anterior and posterior longitudinal ligaments, joint capsules, ligamentum flavum, and interspinous ligament.
Technical Paper

Age-Specific Pediatric Cervical Spine Biomechanical Responses: Three-Dimensional Nonlinear Finite Element Models

1997-11-12
973319
In this study, three-dimensional nonlinear finite element models of age-specific one year old, three year old, and six year old pediatric human cervical spine (C4-C5-C6) structures were developed. Their biomechanical responses were compared with the adult human cervical spine behavior under different loadings and at all load levels. The adult human cervical spine model was constructed from close-up computed tomography sections in the axial and sagittal planes, and sequential anatomic cryomicrotome sections. The adult model was validated with experimental moment-rotation data under flexion-extension and compression by correlating bilateral strains in the vertebral body and the lateral masses, and the force-deflection responses with experiments conducted in our laboratory. The adult model was modified to create one, three and six year old pediatric spines by incorporating the local geometrical and material characteristics of the developmental anatomy.
X