Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Time Resolved Exhaust Port Sampling Studies Related to Hydrocarbon Emissions from SI Engines

1998-10-19
982558
The role of post-combustion oxidation in influencing exhaust hydrocarbon emissions from spark ignition engines has been identified as one of the major uncertainties in hydrocarbon emissions research [l]*. While we know that post-combustion oxidation plays a significant role, the factors that control the oxidation are not well known. In order to address some of these issues a research program has been initiated at Drexel University. In preliminary studies, seven gaseous fuels: methane, ethane,ethene,propane,propene, n-butane, 1-butene and their blends were used to examine the effect of fuel structure on exhaust emissions. The results of the studies presented in an earlier paper [2] showed that the effect of fuel structure is manifested through its effect on the post-combustion environment and the associated oxidation process. A combination of factors like temperatures, fuel diffusion and reaction rates were used to examine and explain the exhaust hydrocarbon emission levels.
Technical Paper

Tracer Fuel Injection Studies on Exhaust Port Hydrocarbon Oxidation

1998-10-19
982559
Time resolved exhaust port sampling results show that the gas mixture in the port at exhaust valve closing contains high concentrations of hydrocarbons. These hydrocarbons are mixed with hot in-cylinder gases during blowdown and can react either via gas phase kinetics in the exhaust port/runner system or subsequently on the exhaust catalyst before they are emitted. Studies were conducted on a single cylinder, four stroke engine in our laboratory to determine the interaction between the hot blowdown gases and the hydrocarbons which remain in the exhaust port. A preselected concentration and volume of hydrocarbon tracers (propane, propene, n-butane, and 1-butene) in either oxygen/nitrogen mixtures or pure nitrogen were injected into the exhaust port just behind the exhaust valve to control the initial conditions for any potential oxidation in the port.
Technical Paper

Post Combustion Hydrocarbon Oxidation and Exhaust Emissions - Neat Fuel and Fuel Blend Studies

1998-05-04
981456
Inevitably a fraction of the hydrocarbon fuel in spark ignition engines escapes in-cylinder combustion and flows out with the burned products. Post combustion oxidation in the cylinder and exhaust port may consume a part of this fuel and plays an important role in determining exhaust emission levels. This paper presents results from experiments designed to identify the factors that control post-combustion oxidation. Regulated exhaust components and detailed hydrocarbon species were measured using seven neat hydrocarbons and four blends as fuel. The fuels were selected to compare the relative rates of mixing and chemical kinetics. The results indicate that exhaust temperature, diffusion rates and fuel kinetics each play a complicated role in determining emission levels.
Technical Paper

The Effects of Methanol and Ethanol on the Oxidation of a Primary Reference Fuel Blend in a Motored Engine

1995-02-01
950682
This experimental study was conducted in a motored research engine to investigate the effect of blending methanol and ethanol on hydrocarbon oxidation and autoignition. An 87 octane mixture of primary reference fuels, 87 PRF, was blended with small percentages of the alcohols to yield a constant gravimetric oxygen percentage in the fuel. The stoichiometric fuel mixtures and neat methanol and ethanol were tested in a modified single-cylinder engine at a compression ratio of 8.2. Supercharging and heating of the intake charge were used to control reactivity. The inlet gas temperature was increased from 325 K to the point of autoignition or the maximum achievable temperature of 500 K. Exhaust carbon monoxide levels and in-cylinder pressure histories were monitored in order to determine and quantify reactivity.
Technical Paper

Autoignition Chemistry Studies on Primary Reference Fuels in a Motored Engine

1994-10-01
942062
Autoignition chemistry of n-heptane, iso-octane and an 87 octane blend, 87 PRF, was studied in a single-cylinder modified Wisconsin model AENL engine under motored conditions. Use of a fast-acting sampling valve and gas chromatographic analysis allowed measurement of in-cylinder gas composition during the ignition process. Crank angle resolved species evolution profiles were generated for all three fuels at a fixed inlet temperature of 376 K. For n-heptane, the measurements were made during a cyclically repeatable two stage ignition process up to the point of hot ignition (the second stage ignition). These n-heptane experiments were run at ø = 0.3 to avoid excessive pressure rise at hot ignition which might damage our engine. iso-Octane and 87 PRF were run at stoichiometric equivalence ratio which did not have a second stage ignition, and species were measured only during the first stage of ignition.
Technical Paper

The Effects of Octane Enhancing Ethers on the Reactivity of a Primary Reference Fuel Blend in a Motored Engine

1994-03-01
940478
This paper presents results of studies investigating the effect of octane enhancing ethers on the reactivity of an 87 octane mixture of primary reference fuels, 87 PRF, in a motored engine. 87 PRF was blended with small percentages of MTBE, ETBE, TAME and DIPE based on a constant gravimetric oxygen percentage in the fuel. The experiments were conducted in a modified single-cylinder Wisconsin AENL engine at compression ratios of 5.2 and 8.2. Supercharging and heating of the intake charge were used to control reactivity. The inlet gas temperature was increased from 320 K, where no reactivity occurred, until either autoignition occurred or the maximum temperature of the facility was reached. Exhaust carbon monoxide levels and in-cylinder pressure histories were monitored in order to determine and quantify reactivity.
X