Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Reduction of HC Emission for Passenger Car Diesel Engine

2007-04-16
2007-01-0663
Analysis to clarify the influence of diesel nozzle hole specifications on HC emission is performed by using a single cylinder engine. The total nozzle hole area and the number of holes are the investigation parameters. The experimental results show that HC emission under low-load condition becomes higher with not only the increase of the total nozzle hole area but also the decrease of it. The reason for the increase of HC emission with small hole area is that the longer spray tip penetration of the pilot injection accelerates the spray diffusion in the cylinder, and the over-lean fuel-air mixture areas become easily formed.
Technical Paper

A Method for Suppressing Formation of Deposits on Fuel Injector for Direct Injection Gasoline Engine

1999-10-25
1999-01-3656
Our concern was with the phenomenon of the fuel flow rate change in the injector due to deposit formation in the direct injection gasoline engine. The fundamental factors in the deposit formation on the nozzle were investigated, and engine dynamometer tests were performed. It was clarified that the residual fuel in the nozzle hole should be kept in a liquid state so that deposit precursors could be washed away by fuel injections. As a consequence, the nozzle temperature had to be below the 90 vol. % distillation temperature of the fuel, which was the most important index to suppress the deposit formation.
Technical Paper

Analysis of Mixture Formation of Direct Injection Gasoline Engine

1998-02-23
980157
Direct injection gasoline engines require extremely advanced control of air-fuel mixture in order to achieve good stratified combustion. The method of examining quality of mixture formation in combustion chambers is essential for the achievement. In this research, air-fuel mixture in combustion chamber of the TOYOTA D-4 engine was analyzed in space and time by visualization as well as Air/Fuel ratio measurement by multi-point and high response techniques. Thus the effects that injection timing, swirl and fuel pressure exerted to mixture formation were elucidated.
Technical Paper

Toyota Lean Combustion System - The Third Generation System

1993-03-01
930873
The third generation four valve lean combustion engine controlled by newly designed combustion pressure sensor has been developed. This combustion sensor composed of a metal diaphragm and a thin silicone layer formed on devitron piece detects the combustion pressure in the No.1 cylinder. Comparing with the lean mixture sensor equipped in the first and second generation lean combustion engine, the lean misfire limit was detected directly with this sensor, and the lean operation range was expanded, which realized lower fuel consumption and NOx emission. The output torque fluctuation was minimized by precisely compensating the fuel supplied to individual cylinder based on the crank angle sensor signal. Separated dual intake ports, one with the swirl control valve and the other with helical port shape was designed and a twin spray injection nozzle was equipped between those ports. The swirl ratio was lowered from 2.2 to 1.7.
X