Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

KEY ATTRIBUTES FOR VIRTUALLY SIMULATING 2ND ROW SEAT HARD STOP MECHANISM AS PER SEAT STANDARD

2015-04-14
2015-01-1334
Safety and Comfort are the core requirements of the automotive seating systems. Number of the occupants, determines type of the seating system requirement. The second row seat often needs to fold and slide, to allow the passenger to enter inside the car. Folding second row seat will also allow accommodating larger length cargo. The over folding of seat is controlled by hard stop mechanism. The hard stop mechanism generally consists of the seat arm stopper at back seat and hard stop located at base of the seat. These stoppers will limit the further motion of back seat. The folding speed of back seat is governed by various factors e.g. adjacent seat foam/structure friction, location, structural mass of seat etc. The scope of the paper is to evaluate various folding speeds of the back seat. Its effects are evaluated for the stresses and fatigue life of the hard stop components.
Technical Paper

Design of Automotive Shield using Concurrent Design Approach

2014-04-28
2014-28-0037
In Automotive world, different types of shield are used to safe guard the assembly from dirt and dust. These can deteriorate the performance and functioning of systems. Typically the dirt shields are not load carrying members, so preferred to have low gauges and low weight. Dirt shield has to cover many subassemblies, so it has intricate shape as well. Due to low gauge and complicated shape, the manufacturing of these shields becomes challenging in terms of maintaining assembly tolerances. In order to overcome these concerns, concurrent design approach is used. Using this approach manufacturing process of the parts is virtually simulated and residual stresses, strains, permanent set, spring back effect are evaluated. These results are cascaded to assembly load analysis, and results are monitored for deflections.
Technical Paper

Structural Evaluation of Ashcan and Performance Enhancement by Spring Optimization

2014-04-01
2014-01-0350
Ashcan contributes to the aesthetics and elegance of the vehicle interiors. It is used to store the ash. Generally the ashcan is fitted on the console of the car. The operational requirement of ashcan is to open with minimum force but not at very low accelerations experienced during the vehicle bump event. Also closing force should be comparatively higher. The closing of the ashcan lid should ensure positive locking, which may be achieved by using cam and follower locking mechanism. The other requirement is that it should be structurally durable enough to sustain the repetitive loading during its operation. Ashcan may undergo severe abusive loading during its operation. To simulate these operations and understand the physics of the problem, a multi-step non-linear analysis involving a complex contact situation is carried out. The scope of this paper is to explain the procedure of calculating the force required for closing and opening of the ashcan lid.
X