Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Development of V-6 3.5-liter Engine Adopting New Direct Injection System

2006-04-03
2006-01-1259
A new V-6 3.5-liter gasoline engine (2GR-FSE) uses a newly developed stoichiometric direct injection system with two fuel injectors in each cylinder (D-4S: Direct injection 4-stroke gasoline engine system Superior version). One is a direct injection injector generating a dual-fan-shaped spray with wide dispersion, while the other is a port injector. With this system, the engine achieves a power level among the highest for production engines of this displacement and a fuel economy rating of 24mpg on the EPA cycle. Emissions are among the lowest level for this class of sedans, meeting Ultra Low Emission Vehicle standards (ULEV-II). The dual-fan-shaped spray was adopted to improve full-load performance. The new spray promotes a homogeneous mixture without any devices to generate intense in-cylinder air-motion at lower engine speeds.
Technical Paper

Development of a New V-6 High Performance Stoichiometric Gasoline Direct Injection Engine

2005-04-11
2005-01-1152
A new V-6 stoichiometric gasoline direct injection engine was developed for high performance FR (Front Engine Rear Drive) vehicles. High power performance, low fuel consumption and low exhaust emissions were achieved by employing a stoichiometric direct injection system that uses Toyota's unique slit nozzle injector that generates a fan-shaped fuel spray and variable intake and exhaust valve timing systems. Focusing on the power performance, maximum power of 183kW (61kW/L) is achieved at 6200rpm and maximum torque is 312Nm at 3600rpm. This power performance is among the top production 3.0 L gasoline engines in the world. This paper outlines the features of this engine and some special technologies contributing to the achievement of the above-mentioned high performance. Optimizing the intake-port design was done to improve power performance.
Technical Paper

Combustion Analysis on Piston Cavity Shape of a Gasoline Direct Injection Engine

2001-05-07
2001-01-2029
This paper describes the analyses to improve both stratified and homogeneous charge combustion of a gasoline direct injection engine. In this study, computational fluid dynamics (CFD) and high-speed hydrocarbon (HC) measurement were employed to observe the mixture formation process. The analysis of the combustion flame propagation was conducted by in-cylinder visualization and ion current measurement. As a result of the analyses, the following conclusions were made: 1 An oval shaped wall cavity can direct the mixture gas to the vicinity of the spark plug better than a conventional shell-shaped wall cavity. The oval shaped wall cavity can improve fuel consumption and HC emission at stratified charge combustion. 2 A shallow cavity improves the homogenization of mixture gases and wide open throttle (WOT) performance.
Technical Paper

Numerical Study of Mixture Formation and Combustion Processes in a Direct Injection Gasoline Engine with Fan-Shaped Spray

2001-03-05
2001-01-0738
Numerical 3-D simulations are performed for the improvement of the new direct injection gasoline engine. A solution based local grid refinement method has been developed in order to reduce the CPU time. This method has been incorporated into the CFD program (STAR-CD) with in-house spray and combustion models. Calculation results were compared with the experimental data taken by the LIF technique, and good agreement was obtained for the mixture formation and combustion processes. Some calculations were carried out for the fuel-air mixture formation process during late injection stratified combustion and the following results were obtained. The unburnt fuel has a tendency to remain in the side of the piston cavity at the latter part of the combustion period. To reduce the amount of unburnt fuel, it was shown that the combination of a thin thickness fan spray and compact cavity forms a spherical mixture, suitable for combustion.
Technical Paper

Analysis of Cylinder Bore Distortion During Engine Operation

1995-02-01
950541
A calculation method of the bore distortion during engine operation was developed. This method can consider the sliding effect of the cylinder head on the top dock of the cylinder block. The bore distortion during engine operation calculated by this method agrees with that measured by Fujimoto, better than that calculated by conventional method. Calculated results for a Toyota 4-cylinder in-line 1.5L engine showed that thermal distortion has larger effects on the cylinder bore distortion during engine operation than cylinder head clamping distortion.
Technical Paper

Thermal Analysis of Timing Belt

1989-09-01
891988
This paper describes an analysis of the rise in timing belt temperature occuring under high engine speed operation that was made to establish the cause of heat deterioration of the belt materials. Surface temperatures of the belt were accurately measured by correcting thermo-vision detected radiations to eliminate environmental radiation. The temperature profile of a belt cross-section was obtained by a specially developed thermo-couple device. The experimental results indicated that heat generated by the belt contributes significantly to the temperature rise and that the primary cause of the heat generation is bending hysteresis of the belt cords. In addition, a description is made of a method of calculating the rate of heat generation in the belt. In this simulation method, the energy dissipated as heat is calculated from the bending strains and loss moduli of the belt materials. Calculated results were found to agree well with experimental results.
X