Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Achieving BS-IV Emission Targets for Diesel Small Commercial Vehicle (SCV) with Close Coupled Advanced EnviCat® DOC and Coated PM Metalit® After - Treatment System

2013-01-09
2013-26-0054
Small Commercial Vehicle (SCV) is an emerging Commercial Vehicle (CV) segment both in India and throughout the world. Vehicles in this segment have diesel engine of capacity less than 1 l and GVW of less than 3.5 t. Normally for the CV, engines are tested on engine dynamometer for emission test, but SCV are tested on chassis dynamometer as they are classified as N1.1 class vehicles. Hence SCV have to follow same emission regulations as diesel passenger cars. The main challenge is to meet BS-IV NOx and PM emission target together with high torque optimization along with required durability targets. This paper addresses this challenge and reports the work carried out on an Indian SCV with 0.7 l naturally aspirated indirect injection diesel engine.
Technical Paper

Emission Performance Improvements with Turbulent Metal Substrates on 2 & 3 Wheelers

2009-12-13
2009-28-0015
Two and Three Wheeler industry in the Asian region is growing at a rapid pace, as commuting by these vehicles is more affordable and efficient, specially in the developing nations. However, tightening of emission legislations, aimed at creating a cleaner and healthier environment, has led to increasingly demanding efforts required in making more efficient engines / vehicles and also focus on effective after-treatment systems. Catalytic converters, being the most preferred option for after-treatment solutions, play an important role in achieving the desired end results. Over the past several years, monolithic catalytic converters with laminar flow profile were being used by automotive industry. These catalytic converters though create some turbulence at the inlet, make the majority of the rest of the flow laminar, thereby reducing the mass transfer of the exhaust gas components to the effective catalytic sites.
Technical Paper

Experiences with Metallic Turbulent Substrates on 2.6/ Diesel Vehicle for Meeting Present and Future Emission Norms

2007-01-17
2007-26-018
Over the past several years, monolithic catalytic converters with laminar flow profile are being used by automotive industry. These catalytic converters, though create some turbulence at the inlet, make the majority of the rest of the flow laminar, thereby reducing the mass transfer of the exhaust components to the effective catalytic sites. Improvements were achieved only through the higher cell densities so far. If the design change in the substrates allows the change of exhaust flow from laminar to turbulent, longer residence time can be achieved and more unconverted gases from the core of the channel come closer to the catalyst surfaces facilitating more reaction with the active catalytic sites. The turbulent technology has been successfully developed more recently with metal substrates to get the required turbulent flow characteristics in the substrate channels.
Technical Paper

PM Metalit® - A Continuously Regenerating Partial Flow Particulate Filter - Concept and Experience with Korean Retrofit Programme

2008-01-09
2008-28-0008
Emission legislations for the light / medium and heavy duty vehicles are becoming more and more stringent worldwide. Tightening of NOx and Particulate Matter (PM) limits further from Euro III to Euro IV levels has provoked the need of either controlling NOx from the engine measures and use PM control after-treatment devices such as Partial Flow Filters, or, controlling PM from the engine measures and use NOx control devices such as Selective Catalytic Reduction (SCR) systems. Manufacturers have adopted different strategies, depending upon the suitability, cost factors, infrastructure development and ease of maintenance of these systems. PM Metalit®, is a partial flow filter, which captures particulates coming out of the exhaust and re-generates on a continuous basis with the help of Nitrogen Dioxide (NO2) in the exhaust.
X