Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Physical and Virtual Simulation of Lightweight Brake Drum Design for Heavy Duty Commercial Vehicles Using Alternate Material Technologies

2018-10-05
2018-01-1897
Brake drum in commercial vehicles is very important aggregate contributing towards major weight in brake system module. The main function of brake drum is to dissipate kinetic energy of vehicle into thermal energy, as a results in braking operation major load comes on brake drum. Hence this is very critical component for vehicle safety and stability [1]. Objective of this paper is to increase the pay load, which is utmost important parameter for commercial vehicle end customers. To achieve the light weighing target, alternate materials such as Spheroidal graphite iron (SGI) has been evaluated for development of brake drum. Many critical parameters in terms of reliability, safety and durability, thickness of hub, wheel loading, heat generation on drum, manufacturing and assembly process are taken into consideration. The sensitivity of these parameters is studied for optimum design, could be chosen complying each other’s values.
Technical Paper

FEM based Approach for Design and Development of Exhaust System Flex Connector and Experimentally Validated

2017-03-28
2017-01-1079
Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing or selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
Technical Paper

Commercial Vehicles Muffler Volume Optimization using CFD Simulation

2014-09-30
2014-01-2440
In today's competitive world, vehicle with light weighting is the most focused area. Vehicle light weighting can be done either by using light weight materials or by reducing the size of the existing components. In present paper later approach of vehicle light weighting is followed. It will help in design lay outing and reduce weight will add benefit to Fuel Efficiency (FE) too. Scope for light weighting is identified in exhaust system where muffler volume is optimized using Computational Fluid Dynamics (CFD) commercial tool FLUENT™. The back pressure, exhaust gas temperature, sound noise level & sound quality are chosen as design verification parameters. The muffler volume is reduced by 14.1%; resultant system become 14.1% compact with 2% lighter weight. Initially CFD analysis is performed on existing muffler and correlated with available test results. Accordingly parameters like pressure drop and flow induced noise are set as target values for new design.
X