Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Slit Nozzle Injector for A New Concept of Direct Injection SI Gasoline Engine

2000-06-19
2000-01-1902
A direct injection spark ignition (DISI) gasoline engine with a new stratified charge combustion concept has been launched on the Japanese domestic market. This new concept consists of two components. First, a thin fan-shaped spray from a slit nozzle enables wide spray dispersion, moderate spray penetration and a fine atomization. Second, a shell-shaped piston cavity allows better mixture formation, however avoiding distinct charge motions (such as tumble or swirl). Simple intake port geometry increases the full load performance. The combustion concept, at the same time allows stratified charge to be used at higher load and at higher engine speeds and improves the homogeneous charge combustion. A new 3L in-line 6 gasoline engine with this combustion concept showed 20% better fuel economy than a 3L port fuel injection (PFI) engine (λ=1 feed back system) under the Japanese 10-15 mode.
Technical Paper

Development of a New Injector in Gasoline Direct Injection System

2000-03-06
2000-01-1046
The required fuel spray characteristics, controlled fuel pressure, and injector installation configurations in gasoline direct injection differ among manufacturers. As a result, there are currently a variety of injector types and configurations being proposed by many different component manufacturers. This paper proposes a new injector design that both enables high fuel pressure operation by utilizing a highly efficient electromagnetic valve using a composite magnetic material for the injector actuator, and increases manufacturing productivity while also meeting the requirements of each engine manufacturer by simplifying the construction of the injector.
Technical Paper

μ - Synthesis of Robust Control on Active Mounts for Vehicle Vibration Reduction

1996-02-01
960186
This paper presents a new design method for solving the vehicle vibration problem induced by engine drive, by using a μ-synthesis. We have tried the active control of engine mounts to insulate the vibration of engine. We experimented on the effects by using computer simulation and vibration simulator. Computer simulation results show that resonance peak can be effectively reduced. We have also confirmed the effect of vibration simulator, which shall be reported in this paper.
X