Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Research of the ultimate cleanness of internal combustion engine and the application for mass production vehicles

2000-06-12
2000-05-0206
The needs of the non-internal combustion engine for the automobile have been increasingly emphasized due to the seriousness of the air pollution in major cities and the global warming. However, such power plant technologies are generally considered to be still far away from the full commercialization as technical issues including infrastructure and cost are still remaining to be solved, so the substantial emission cleanup through the market penetration requires a long time for the realization. For the mean time, attempts are made to investigate the maximum potential of the internal combustion engine for reduction of both exhaust emissions and CO2 focusing on Honda''s near-zero emission Zero Level Emission Vehicle (ZLEV) technology.
Technical Paper

Technology for Reducing Exhaust Gas Emissions in Zero Level Emission Vehicles(ZLEV)

1999-03-01
1999-01-0772
ZLEV was accomplished by applying the Three-Stage Emission Management System, utilizing ultra-precise combustion and exhaust gas conversion control technology, and dividing the operation into three-stages of just after engine start, the warm-up stage, and normal running. These individual component technologies include improving engine combustion (high swirl combustion by variable valve timing and lift) and performing fuel control optimization during engine startup to reduce unburned HC emission, quick catalyst activation (engine control and catalyst improvements), HC adsorption of a hybrid catalyst (catalyst improvement and desorption conversion control), and high precision air-fuel ratio feed back control (catalyst condition predictive control, and others).
Technical Paper

High Cell Density and Thin Wall Substrate for Higher Conversion Ratio Catalyst

1999-03-01
1999-01-0268
Although air pollution has mitigated since the introduction of exhaust emission regulations, further reduction of it especially in the metropolitan areas is anticipated. An effective way to resolve this issue is to improve the catalyst performance. Of many approaches, improving substrate is one promising way to achieve this goal. Results of applying high cell density and light- weight substrates, coupled with high precious metal content, are discussed theoretically and verified experimentally here. The significant improvements made in the low temperature activity and warmed-up conversions by increasing geometrical surface areas and lowering thermal mass of high cell density substrates are described.
Technical Paper

Development of the High Performance L4 Engine ULEV System

1998-02-23
980415
A new simple ULEV system has been developed, using only an underfloor catalytic converter. The new system features a VTEC (variable valve timing and lift mechanism) engine with a newly developed catalyst, a precise air-fuel ratio control for maximizing the catalyst performance and the newly developed low heat capacity exhaust system with the air-gap. These technology have contributed to a reduction in the feed gas, the quick activation of the catalyst and an improvement in the maximum conversion ratio of the catalyst, making it possible to pass the ULEV standard without sacrificing vehicle output power.
X