Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Study on Low Frequency Drum Brake Squeal

2004-10-10
2004-01-2787
Low frequency drum brake squeal is often very intense and can cause high levels of customer complaints. During a noise event, vehicle framework and suspension components are excited by the brake system and result in a violent event that can be heard and felt during a brake application. This paper illustrates the experimental and analytical studies on a low frequency drum brake squeal problem that caused high warranty cost. First the environmental condition was identified and noise was reproduced. Vehicle tests were performed and operating deflection shapes were acquired. The sensitivity of the lining material to different environmental conditions was investigated. With the use of complex eigenvalue method, models were constructed to obtain further understanding of the phenomena. Finally, the squeal mechanism of a drum brake system is discussed and various solution techniques for low frequency drum brake noise are evaluated.
Technical Paper

The Influence of Friction-Induced Damping and Nonlinear Effects on Brake Squeal Analysis

2004-10-10
2004-01-2794
This paper presents numerical studies of friction-induced instabilities of brake systems using complex mode analysis. The complex eigenvalue extraction is performed at a deformed configuration; thus, nonlinear effects are taken into account in the modal analysis. An example case is used to illustrate the importance of friction-induced damping and nonlinear effects in brake squeal analysis. It is found that the inclusions of lining wear, geometric nonlinearities, and positive as well as negative frictional damping effects have significant influence on the brake squeal predictions.
Technical Paper

Brake Squeal Analysis Incorporating Contact Conditions and Other Nonlinear Effects

2003-10-19
2003-01-3343
A squeal analysis on a front disc brake is presented here utilizing the new complex eigenvalue capability in ABAQUS/Standard. As opposed to the direct matrix input approach that requires users to tailor the friction coupling matrix, this method uses nonlinear static analyses to calculate the friction coupling prior to the complex eigenvalue extraction. As a result, the effect of non-uniform contact pressure and other nonlinear effects are incorporated. Friction damping is used to reduce over-predictions and the velocity dependent friction coefficient is defined to contribute negative damping. Complex eigenvalue predictions of the example cases show very good correlation with test data for a wide range of frequencies. Finally, the participation of rotor tangential modes is also discussed.
Technical Paper

Mechanical Properties of Friction Materials and the Effect on Brake System Stability

2003-05-05
2003-01-1619
This study utilizes complex eigenvalue analysis to investigate the sensitivity of dynamic system stability to the mechanical properties of the friction material. The friction material is modeled as a transverse isotropic material exhibiting different in-plane and out-of-plane moduli. Parametric studies are performed to evaluate system stability under various combinations of these properties. The initial analysis results show good correlation with laboratory testing for both squeal frequency and mode shape. Additional laboratory testing reveals a change in friction material can have a significant effect on the noise performance of a system. Analysis was performed with corresponding friction materials and the results were directionally consistent. This helped to validate the analysis model and establish confidence in the analysis results. In general, for the specific system considered, decreasing both in-plane and out-of-plane moduli encouraged system stability.
Technical Paper

Modal Participation Analysis for Identifying Brake Squeal Mechanism

2000-10-01
2000-01-2764
Brake squeal phenomenon often involves modal coupling between various component modes. In order to reduce or eliminate squeal, it is very important to understand the coupling mechanism so that the key component(s) can be modified accordingly. This paper demonstrates a quantitative method to define system mode shapes using the concept of modal participation factors. This method is implemented on a front disc brake system to identify the modal coupling mechanism associated with its high frequency squeal. Complex eigenvalue analysis is carried out and the squeal frequency is correlated. System mode shapes are then processed with an in-house program to calculate modal participation factors based on a complex MAC (Modal Assurance Criteria) algorithm. The coupling mechanism is identified and possible countermeasures are discussed.
Technical Paper

Complex Eigenvalue Analysis for Reducing Low Frequency Brake Squeal

2000-03-06
2000-01-0444
A front disc brake system is used as an example for an investigation of low frequency squeal. Many different modifications to this disc brake system have been proposed and this paper focuses on a solution that reduces the stiffness of the rotor. This is accomplished by a reduction in the Young's modulus of the rotor material. The complex eigenvalue method is used for a detailed analytical study in order to obtain a better understanding of this solution technique. Modal participation factors are calculated to examine the modal coupling mechanism. Parametric studies are also performed to find out the effects of friction coefficient and rotor stiffness. Results show that shifting rotor resonance frequencies may ecouple the modal interaction and eliminate dynamic instability, which is in agreement with experimental results.
Technical Paper

Determination of Viscoelastic Core Material Properties Using Sandwich Beam Theory and Modal Experiments

1999-05-17
1999-01-1677
Damping material for automotive structures is often quantified in terms of composite loss factor or damping ratio by using ASTM/SAE beam or modal tests. Simplified expressions have also been used to estimate certain material properties. However, none of these tests provide any information on the properties of viscoelastic core material such as rubber or adhesive in practical structures. To overcome this deficiency, a refined estimation procedure is proposed. A new sandwich beam model has been developed which describes all layers of an arbitrarily applied damping patch. By using both analytical predictions and modal experiments on a cantilever beam, spectrally-varying loss factor and shear modulus of the unknown core are determined.
Technical Paper

Evaluation of Damping Material at Higher Frequencies with Application to Automotive Systems Including Brakes

1995-05-01
951243
Many discrete tonal type noise and vibration problems in automotive systems and other physical structures require passive multi-layer visco-elastic damping treatments in mid to high frequency regimes. To address such issues, experimental modal analysis and dynamic finite element methods are suggested as suitable tools. Results are presented in terms of several test structures (four thin elastic beams, a thick elastic plate and an automotive brake pad) with free-free boundary conditions. Composite modal loss factors are measured and predicted for two different damping insulators consisting of adhesive, steel and coating combinations. Special attention is paid to the elastic deformation modes of test structures and spectral scaling of material properties for the finite element models.
X