Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Experimental Study on the Impact of Lubricant Ash on CN6 After-Treatment System Performance of GDI Vehicle

2021-04-06
2021-01-0586
In order to study the influence of lubricant ash on the performance of the CN6 after-treatment system, especially the catalyst characteristics of Coated Gasoline Particulate Filter (CGPF), the system was rapidly aged on the engine bench by blending combustion method, and the ash content of 60g represented the endurance of 200kkm CGPF. The effects of CGPF with different endurance mileage on particulate matter emission, gas light-off temperature and engine performance of a Gasoline Direct Injection (GDI) vehicle were studied on the engine bench, chassis dynamometer and real-road tests. Finally, the ash distribution was analyzed by computed tomography (CT). The results showed that the vehicle equipped with CGPF could meet the requirements of CN6 particulate and gas emission limits under both worldwide harmonized light vehicles test cycle (WLTC) and real driving emission (RDE) tests.
Technical Paper

Experimental Study on Diesel Spray Characteristics at Different Altitudes

2018-04-03
2018-01-0308
In this study, effects of altitude on free diesel spray morphology, macroscopic spray characteristics and air-fuel mixing process were investigated. The diesel spray visualization experiment using high-speed photography was performed in a constant volume chamber which reproduced the injection diesel-like thermodynamic conditions of a heavy-duty turbocharged diesel engine operating at sea level and 1000 m, 2000 m, 3000 m and 4500 m above sea level. The results showed that the spray morphology became narrower and longer at higher altitude, and small vortex-like structures were observed on the downstream spray periphery. Spray penetration increased and spray angle decreased with increasing altitude. At altitudes of 0 m, 1000 m, 2000 m, 3000 m and 4500 m, the spray penetration at 1.45 ms after start of injection (ASOI) were 79.54 mm, 80.51 mm, 81.49 mm, 83.29 mm and 88.92 mm respectively, and the spray angle were 10.9°, 10.8°, 10.7°, 10.4°and 9.8° respectively.
Technical Paper

A New Calibration Method for Digital 3D Profilometry System

2007-04-16
2007-01-1380
Recently the use of digital 3D profilometry in the automotive industries has become increasingly popular. The effective techniques for 3D shape measurement, especially for the measurement of complicated structures, have become more and more significant. Different optical inspective methods, such as 3D profilometry, laser scanning and Coordinate-Measuring Machine (CMM), have been applied for 3D shape measurement. Among these methods, 3D profilometry seems to be the fastest and inexpensive method with considerably accurate result, and it has simple setup and full field measuring ability compared with other techniques. In this paper, a novel calibration method for 3D-profilometry will be introduced. In this method, a multiple-step calibration procedure is utilized and best-fit calibration curves are obtained to improve measurement accuracy. A recursive algorithm is used for data evaluation, along with calibration data.
Technical Paper

Absolute Phase Measurement Method for Digital 3D Profilometry System

2006-04-03
2006-01-0768
Digital 3D profilometry is a non-contact, full-field, and fast method for 3D profile digitization. It has a relatively simple setup and acceptable measurement accuracy. Traditional phase shifting technique uses single frequency fringe pattern for coding the depth information and an unwrapping procedure is required for decoding. Usually, the object has to be a continuous surface without any disconnected part or large height discontinuities. In this paper, a new method of three-frequency fringe pattern is presented to measure objects with complicated structures, which have large surface height discontinuities, or contain separated components. Principles and procedures are described. Experimental application is given and limitations are discussed.
Technical Paper

Surface Flatness Measurement Through a Digital 3D Profilometry System

2005-04-11
2005-01-0893
Digital 3D profilometry is a non-contact, full-field, and fast method for 3D profile digitization. It has a relatively simple setup and acceptable measurement accuracy. Surface flatness plays an important role in many circumstances, such as sealing and contact. Using digital 3D profilometry to measure surface flatness is a new challenge to researchers. In this paper, new development is presented on how to measure surface flatness. Principles and procedures are described in detail. Measurement applications are given and limitations are discussed.
Technical Paper

Measurement of Thermal Residual Strain Induced During the Hardening of a Sheet Metal and Reinforced Composite by Digital Shearography

2005-04-11
2005-01-0895
Shearography is an interferometric, non-contact and full field method for direct measurement of first derivatives of deformation (strain). It is relatively insensitive to environmental disturbances and has been proven to be a practical measuring tool for nondestructive testing and evaluation (NDT/NDE). In this paper it has been employed to study the thermal residual strains produced during the reinforcement of a composite to a sheet metal. The reinforced composite is used as an additive to provide extra strength to the sheet metal. The reinforcement process involves gradual heating of the glued composite to a temperature of around 175°C - 180°C and then allowing it cool down to room temperature. During the heating process both the composite and the sheet metal are strained, but during the cooling process some amount of strain is left behind in the sheet metal and it has a key role to play when the product is used for critical parts in automobile and aircraft industries.
Technical Paper

A Warpage Measurement System with Large Dynamic Range for Boards with Components

2000-03-06
2000-01-0458
A new algorithm for carrier removal, a key step in the Fourier transform method of fringe pattern analysis, is presented in this paper. The accuracy of frequency estimations is critical to carrier removal to avoid potential significant errors in the recovered phase. A new algorithm on Fourier transform and curve fitting technique is developed. To avoid an ill-conditioned result in solving the least-square problem, an orthogonal polynomial curve fitting algorithm is developed. A new system that combines projected grating moiré (PM) with shadow moiré (SM), recently designed and built with large dynamic range for both component level and board level warpage measurement for the reliability study of electronic packaging materials and structures, is presented and demonstrated.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
X