Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Computational Study of Boundary Layer Control for Improving Airfoil Performance

1993-09-01
932513
A computational method was developed for investigating boundary layer control. Solutions of the Reynolds-averaged Navier-Stokes equations were obtained using the two-equation k-∈ turbulence model which includes the low-Reynolds-number effect in the near-wall region. Stream function and vorticity together with the turbulent kinetic energy and its dissipation rate were calculated for the flowfield in a body-fitted coordinate system. By increasing the amount of suction on the upper surface, flow separation could be totally eliminated. Transition from laminar to turbulent flow was delayed. Aerodynamic performance was substantially improved.
Technical Paper

Navier-Stokes Computations of Transition to Turbulent Flow Around Airfoils

1990-09-01
901808
Numerical solutions of the Reynolds-averaged Navier-Stokes equations were obtained with the two-equation K-ϵ turbulence model. Considering the low-Reynolds-number effect in the closed vicinity of a solid boundary, a stream function and vorticity method was developed to consider both the laminar and turbulent stresses throughout the two-dimensional, incompressible flowfield of any arbitrary geometry. At a low Reynolds number (Re = 30), the initially imposed disturbances around an airfoil are damped out; the flow is laminar. At a moderately high Reynolds number (Re = 1000), instability of laminar flow is obtained by exhibiting cyclic patterns in the stream function and vorticity distributions. Nevertheless, only laminar stress occurs in the entire flowfield. At a higher Reynolds number (Re = 106), turbulent stress, which is about three orders of magnitude larger than the laminar stress, occurs at a certain distance downstream of the leading edge and in the wake region.
X