Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Effects of Methyl Ester Biodiesel Blends on NOx Emissions

2008-04-14
2008-01-0078
Effects of methyl ester biodiesel fuel blends on NOx emissions are studied experimentally and analytically. A precisely controlled single cylinder diesel engine experiment was conducted to determine the impact of a 20% blend of soy methyl ester biodiesel (B20) on NOx emissions. The data were then used to calibrate KIVA chemical kinetics models which were used to determine how the biodiesel blend affects NOx production during the combustion process. In addition, the impact on the engine control system of the lower specific energy content of biodiesel was determined. Both factors, combustion and controls, must be taken into account when determining the net NOx effect of biodiesel compared to conventional diesel fuel. Because the magnitude and even direction of NOx effect changes with engine load, the NOx effect associated with burning biodiesel blends over a duty cycle depends on the duty cycle average power and fuel cetane number.
Technical Paper

Biodiesel Impact on Wear Protection of Engine Oils

2007-10-29
2007-01-4141
Pure biodiesel fuel (B100) is typically made of fatty acid methyl esters (FAME). FAME has different physical properties as compared to mineral diesel such as higher surface tension, lower volatility and higher specific gravity. These differences lead to a larger droplet size and thus more wall impingement of the fuel during injection in the combustion chamber. This results in higher levels of fuel dilution as the oil is scraped down into the crankcase by the scraper ring. The lower volatility also makes biodiesel more difficult to evaporate once it enters the crankcase. For these reasons, levels of fuel dilution in biodiesel fueled engines are likely to be higher compared to mineral diesel fueled engines. When in-cylinder dosing is applied to raise the exhaust temperature required for the regeneration of Diesel Particulate Filters (DPF's), biodiesel dilution in the engine oil may be elevated to high levels.
Technical Paper

Performance of a NOx Adsorber Catalyst/Diesel Particle Filter System for a Heavy-Duty Engine During a 2000-Hour Endurance Test

2005-04-11
2005-01-1760
In this study, a 15-L heavy-duty diesel engine and an emission control system consisting of diesel oxidation catalysts, NOx adsorber catalysts, and diesel particle filters were evaluated over the course of a 2000 hour aging study. The work is a follow-on to a previously documented development effort to establish system regeneration and sulfur management strategies. The study is one of five projects being conducted as part of the U.S. Department of Energy's Advanced Petroleum Based Fuels - Diesel Emission Control (APBF-DEC) activity. The primary objective of the study was to determine if the significant NOx and PM reduction efficiency (>90%) demonstrated in the development work could be maintained over time with a 15-ppm sulfur diesel fuel. The study showed that high NOx reduction efficiency can be restored after 2000 hours of operation and 23 desulfation cycles.
Technical Paper

Systems Approach to Meeting EPA 2010 Heavy-Duty Emission Standards Using a NOx Adsorber Catalyst and Diesel Particle Filter on a 15L Engine

2004-03-08
2004-01-0587
This paper outlines the development and integration of an advanced emission control system with a modern heavy-duty diesel engine for use in a series of catalyst aging tests. The project that is discussed is one of several being conducted under the Department of Energy's Advanced Petroleum-Based Fuels - Diesel Emission Control (APBF-DEC) activity. This government/industry collaboration is examining how systems of advanced fuels, engines, and emission control systems can deliver significantly lower emissions while maintaining or improving vehicle fuel economy. This project is using a Cummins ISX EGR engine (15 L) with a secondary fuel injection system to enable NOx adsorber catalyst regeneration. Development of the strategies for NOx regeneration and sulfur removal as well as integration of the emission control hardware is discussed. Performance of oven aged systems tested over transient and steady-state cycles is summarized.
Technical Paper

Statistical Design and Analysis Methods for Evaluating the Effects of Lubricant Formulations on Diesel Engine Emissions

2003-05-19
2003-01-2022
The Advanced Petroleum-Based Fuels - Diesel Emissions Control (APBF-DEC) project is a joint U.S. government/industry research effort to identify optimal combinations of fuels, lubricants, engines, and emission control systems to meet projected emissions regulations during the period 2000 to 2010. APBF-DEC is conducting five separate projects involving light- and heavy-duty engine platforms. Four projects are focusing on the performance of emission control technologies for reducing criteria emissions using different fuels. This project is investigating the effects of lubricant formulation on engine-out emissions (Phase I) and the resulting impact on emission control systems (Phase II). This paper describes the statistical design and analysis methods used during Phase I of the lubricants project.
X