Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Determination of Diesel Spray Axial Velocity Using X-Ray Radiography

2007-04-16
2007-01-0666
Present knowledge of the velocity of the fuel in diesel sprays is quite limited due to the obscuring effects of fuel droplets, particularly in the high-density core of the spray. In recent years, x-ray radiography, which is capable of penetrating dense fuel sprays, has demonstrated the ability to probe the structure of the core of the spray, even in the dense near-nozzle region. In this paper, x-ray radiography data was used to determine the average axial velocity in diesel sprays as a function of position and time. Here, we report the method used to determine the axial velocity and its application to three common-rail diesel sprays at 250 bar injection pressure. The data show that the spray velocity does not reach its steady state value near the nozzle until approximately 200 μs after the start of injection. Moreover, the spray axial velocity decreases as one moves away from the spray orifice, suggesting transfer of axial momentum to the surrounding ambient gas.
Technical Paper

Near-Nozzle Spray Characteristics of Heavy-Duty Diesel Injectors

2003-10-27
2003-01-3150
The process of spray atomization has typically been understood in terms of the Rayleigh-Taylor instability theory. However, this mechanism has failed to fully explain much of the measured data. For this reason a number of new atomization mechanisms have been proposed. The present study intends to gain an understanding of the spray dynamics and breakup processes in the near-nozzle region of heavy-duty diesel injector sprays. As this region is optically dense, synchrotron x-rays were used to gain new insights. This spray study was performed using a prototype common-rail injection system, by injecting a blend of diesel fuel and cerium-containing organometalic compound into a chamber filled with nitrogen at 1 atm. The x-rays were able to probe the dense region of the spray as close as 0.2 mm from the nozzle. These x-ray images showed two interesting features. The first was a breakup of the high density region about 22 μs After the Start Of Injection (ASOI).
Technical Paper

Effects of Ambient Pressure on Dynamics of Near-Nozzle Diesel Sprays Studied by Ultrafast X-Radiography

2004-06-08
2004-01-2026
A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (< 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar N2 and 1 bar SF6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved x-radiographic data revealed that the spray penetration in this near nozzle region was not significantly affected by the limited change of the ambient pressure.
Technical Paper

X-Ray Absorption Measurements of Diesel Sprays and the Effects of Nozzle Geometry

2004-06-08
2004-01-2011
In order to analyze the effects of nozzle geometry on the structure of fuel sprays, quantitative x-ray measurements have been performed on sprays from nozzles with different degrees of hydro-grinding. The two nozzles were measured at injection pressures of 500 and 1000 bar in an ambient environment of 1 bar nitrogen gas. Time-resolved x-radiography was used to measure the two-dimensional mass distributions of the spray as a function of time for the entire spray event. The initial mass flow through the nozzles was determined from the x-ray data, the nozzles showed no appreciable differences in the early part of the injection event. The transverse mass distributions were fit with Gaussian curves, and the assumption of axisymmetry was used to calculate the volume fraction of each spray. It was observed that the nozzle which had undergone extensive hydro-grinding generated a more dense spray than the sharp-edged nozzle at an injection pressure of 1000 bar.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
X