Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

1998-02-23
980635
Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Effect of Geometry and Process Variations on Fastener Performance

1997-04-07
971583
During the last decade, several technological advances have taken place in the construction and fabrication industry in terms of methods, processes and tools which ultimately reduce fabrication time and costs. Fastening of metal plates with bolts and nutes in civil construction of large structures has recently been replaced by self drilling-tapping fasteners. The technique of using a self drilling-tapping fastener not only eliminates use of separate drills and drilling processes, but also eliminates the use of bolts and nuts. In addition, the time to join two plates by a self drilling-tapping fastener is significantly shorter than the time required for joining plates by conventional bolting methods. Although self drilling-tapping fasteners have many advantages, it is equally important that they demonstrate consistent performance in field applications.
X