Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Role of Sensors and Sensing Technology for Future Automotive Systems

1993-03-01
930358
The role of sensors and sensing technologies for the next generation vehicle systems are discussed. The control systems for engines and power-train are expected to realize high efficiency with low pollution and comfort drivability. Vehicular safety and chassis control systems are expected to avoid many kinds of traffic accidents caused by the human errors of drivers. Vehicular information systems will help the drivers to get the information to manage their vehicles economically and efficiency. In every system mentioned above, sensors and sensing technologies are playing an increasingly important role. This paper introduces and discusses essential technologies for sensors and sensing which can be expected to bring the solutions to the future automotive systems.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

1991-02-01
910501
To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1989

1989-02-01
890299
The detection range of an air-fuel ratio sensor is expanded in the rich A/F region. Using a simulation technique, the limiting cause of the detection range in the rich A/F region is identified as insufficient combustion rates of CO and H2 with O2 on the electrode, which prevent realization of a limited diffusion state which is necessary to detect the air-fuel ratio. Applying an improved diffusion layer to decrease the diffusion rates and an improved electrode to increase the combustion rates, it is demonstrated that the detection limit can be expanded to λ=0.6 while that of a conventional sensor is λ=0.8.
Technical Paper

Air-Fuel Ratio Sensor for Rich, Stoichiometric and Lean Ranges

1986-02-01
860408
This paper describes the sensing principle of a new air-fuel ratio sensor, which has the ability to detect air-fuel ratios in rich, stoichiometric and lean ranges. The sensing part is composed of a gas diffusion layer and a zirconia solid electrolyte with a pair of electrodes which function as an anode and a cathode. The anode and the cathode electrodes are exposed to the atmosphere and the exhaust gas, respectively. To obtain the bidirectional pumping current between the two electrodes, the potential of the cathode is held to a constant value higher than the electronic circuit ground. The electromotive force induced between the two electrodes is forcibly controlled to a constant value by the electronic circuit. In this composition, three ranges of air-fuel ratio can be detected by the amount of pumping current.
Technical Paper

Thick-Film Zirconia Air-Fuel Ratio Sensor with a Heater for Lean Mixture Control Systems

1985-02-01
850379
This paper describes the design and operation of a thick-film zirconia air-fuel ratio sensor with a heater. This sensor is composed of two zirconia plate cells, a stoichiometric cell and a lean cell, laminated on the platinum heater. It is fabricated as one body using a thick-film process. The pair of cells has a gas diffusion chamber and a slit type gas diffusion aperture. The sensing principle is based on the rate-determining diffusion of oxygen molecules at the gas diffusion aperture. By using an oxygen pumping phenomenon, air-fuel ratios of the stoichiometric and lean regions can be detected. As this sensor is heated to a high constant temperature, it has sufficient accuracy without any additional temperature compensation. Its starting time is short and response time is very quick.
X