Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Model Guided Application for Investigating Particle Number (PN) Emissions in GDI Spark Ignition Engines

2019-01-09
2019-26-0062
Model guided application (MGA) combining physico-chemical internal combustion engine simulation with advanced analytics offers a robust framework to develop and test particle number (PN) emissions reduction strategies. The digital engineering workflow presented in this paper integrates the kinetics & SRM Engine Suite with parameter estimation techniques applicable to the simulation of particle formation and dynamics in gasoline direct injection (GDI) spark ignition (SI) engines. The evolution of the particle population characteristics at engine-out and through the sampling system is investigated. The particle population balance model is extended beyond soot to include sulphates and soluble organic fractions (SOF). This particle model is coupled with the gas phase chemistry precursors and is solved using a sectional method. The combustion chamber is divided into a wall zone and a bulk zone and the fuel impingement on the cylinder wall is simulated.
Technical Paper

Evaluating Emissions in a Modern Compression Ignition Engine Using Multi-Dimensional PDF-Based Stochastic Simulations and Statistical Surrogate Generation

2018-09-10
2018-01-1739
Digital engineering workflows, involving physico-chemical simulation and advanced statistical algorithms, offer a robust and cost-effective methodology for model-based internal combustion engine development. In this paper, a modern Tier 4 capable Cat® C4.4 engine is modelled using a digital workflow that combines the probability density function (PDF)-based Stochastic Reactor Model (SRM) Engine Suite with the statistical Model Development Suite (MoDS). In particular, an advanced multi-zonal approach is developed and applied to simulate fuels, in-cylinder combustion and gas phase as well as particulate emissions characteristics, validated against measurements and benchmarked with respect to the predictive power and computational costs of the baseline model. The multi-zonal SRM characterises the combustion chamber on the basis of different multi-dimensional PDFs dependent upon the bulk or the thermal boundary layer in contact with the cylinder liner.
Technical Paper

Dual-Fuel Effects on HCCI Operating Range: Experiments with Primary Reference Fuels

2013-04-08
2013-01-1673
Results from a large set of HCCI experiments performed on a single-cylinder research engine fueled with different mixtures of iso-octane and n-heptane are presented and discussed in this paper. The experiments are designed to scrutinize fuel reactivity effects on the operating range of an HCCI engine. The fuel effects on upper and lower operating limits are measured respectively by the maximum pressure rise rate inside the cylinder and the stability of engine operation as determined by cycle-to-cycle variations in IMEP. Another set of experiments that examine the intake air heating effects on HCCI engine performance, exhaust emissions and operating envelopes is also presented. The effects of fuel reactivity and intake air heating on the HCCI ranges are demonstrated by constructing the operating envelopes for the different test fuels and intake temperatures.
Technical Paper

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-04-16
2012-01-1117
A dual-fuel approach to control combustion in HCCI engine is investigated in this work. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Experiments were performed on a single-cylinder research engine fueled with different ratios of primary reference fuels and operated at different speed and load conditions, and results from these experiments showed a clear potential for the approach to expand the HCCI engine operation window. Such potential is further demonstrated dynamically using an optimized stochastic reactor model integrated within a MATLAB code that simulates HCCI multi-cycle operation and closed-loop control of fuel ratio. The model, which utilizes a reduced PRF mechanism, was optimized using a multi-objective genetic algorithm and then compared to a wide range of engine data.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
Technical Paper

Automated IC Engine Model Development with Uncertainty Propagation

2011-04-12
2011-01-0237
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.
Technical Paper

Implementing Detailed Chemistry and In-Cylinder Stratification into 0/1-D IC Engine Cycle Simulation Tools

2011-04-12
2011-01-0849
Employing detailed chemistry into modern engine simulation technologies has potential to enhance the robustness and predictive power of such tools. Specifically this means significant advancements in the ability to compute the onset of ignition, low and high temperature heat release, local extinction, knocking, exhaust gas emissions formation etc. resulting in a set of tools which can be employed to carry out virtual engineering studies and add additional insight into common IC engine development activities such as computing IMEP, identifying safe/feasible operating ranges, minimizing exhaust gas emissions and optimizing operating strategy. However the adoption of detailed chemistry comes at a greater computational cost, this paper investigates the means to retain computational robustness and ease of use whist reducing computational timescales.
Technical Paper

Simulating PM Emissions and Combustion Stability in Gasoline/Diesel Fuelled Engines

2011-04-12
2011-01-1184
Regulations on emissions from diesel and gasoline fuelled engines are becoming more stringent in all parts of the world. Hence there is a great deal of interest in developing advanced combustion systems that offer the efficiency of a diesel engine, but with low PM and NOx. One promising approach is that of Partially-Premixed Compression Ignition (PPCI) or Low Temperature Combustion (LTC). Using this approach, PM can be reduced in compression ignition engines by promoting the mixing of fuel and air prior to combustion. This paper describes the application of an advanced combustion simulator for fuels, combustion and emissions to analyze the key processes which occur in PPCI combustion mode. A detailed chemical kinetic model with advanced PM population balance sub-model is employed in a PPCI engine context to examine the impact of ignition resistance on combustion, mixing, ignition and emissions.
Technical Paper

Identifying Optimal Operating Points in Terms of Engineering Constraints and Regulated Emissions in Modern Diesel Engines

2011-04-12
2011-01-1388
In recent decades, “physics-based” gas-dynamics simulation tools have been employed to reduce development timescales of IC engines by enabling engineers to carry out parametric examinations and optimisation of alternative engine geometry and operating strategy configurations using desktop PCs. However to date, these models have proved inadequate for optimisation of in-cylinder combustion and emissions characteristics thus extending development timescales through additional experimental development efforts. This research paper describes how a Stochastic Reactor Model (SRM) with reduced chemistry can be employed to successfully determine in-cylinder pressure, heat release and emissions trends from a diesel fuelled engine operated in compression ignition direct injection mode using computations which are completed in 147 seconds per cycle.
Technical Paper

Optimisation of Injection Strategy, Combustion Characteristics and Emissions for IC Engines Using Advanced Simulation Technologies

2011-01-19
2011-26-0080
Regulations concerning emissions from diesel- and gasoline-fuelled engines are becoming ever more stringent in all parts of the world. Historically these targets have been achieved through on-going technological development using an iterative process of computational modeling, design, build and test. Computational modeling is certainly the cheapest aspect within this process and if employed to meet more of the challenges associated with development, has the potential to significantly reduce developmental cost and time scales. Furthermore, computational models are an effective means to retain and apply often highly focused technical knowledge of complex processes within development teams thus delivering greater insight into processes.
Journal Article

A Detailed Chemistry Simulation of the SI-HCCI Transition

2010-04-12
2010-01-0574
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results.
Technical Paper

A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition

2010-04-12
2010-01-1241
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four-cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modeling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

A Detailed Chemistry Multi-cycle Simulation of a Gasoline Fueled HCCI Engine Operated with NVO

2009-04-20
2009-01-0130
A previously developed Stochastic Reactor Model (SRM) is used to simulate combustion in a four cylinder in-line four-stroke naturally aspirated direct injection Spark Ignition (SI) engine modified to run in Homogeneous Charge Compression Ignition (HCCI) mode with a Negative Valve Overlap (NVO). A portion of the fuel is injected during NVO to increase the cylinder temperature and enable HCCI combustion at a compression ratio of 12:1. The model is coupled with GT-Power, a one-dimensional engine simulation tool used for the open valve portion of the engine cycle. The SRM is used to model in-cylinder mixing, heat transfer and chemistry during the NVO and main combustion. Direct injection is simulated during NVO in order to predict heat release and internal Exhaust Gas Recycle (EGR) composition and mass. The NOx emissions and simulated pressure profiles match experimental data well, including the cyclic fluctuations.
Technical Paper

HCCI Combustion Phasing Transient Control by Hydrogen-Rich Gas: Investigation Using a Fast Detailed-Chemistry Full-Cycle Model

2009-04-20
2009-01-1134
A novel modeling approach is applied to investigate the use of hydrogen-rich gas (HRG) for controlling the combustion process in a Homogenous-Charge Compression-Ignition (HCCI) engine. A detailed-chemistry stochastic reactor model is coupled with a one-dimensional gas dynamics model to account for the full engine cycle. The integrated model simulates the steady-state and transient operation of a single-cylinder HCCI engine. A previously developed tabulation scheme is utilized to speed up the detailed-chemistry simulations, which, though computationally cheap compared to many other approaches, are impractical for simulations involving a large number of cycles. A control strategy based on HRG addition is implemented using a closed-loop controller built within the gas dynamics model. Simulations conducted at different speeds and with varying loads indicate that the HRG can be effectively used to control the combustion phasing, and hence expand the operating range of the HCCI engine.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Two-stage Fuel Direct Injection in a Diesel Fuelled HCCI Engine

2007-07-23
2007-01-1880
Two-stage fuel direct injection (DI) has the potential to expand the operating region and control the auto-ignition timing in a Diesel fuelled homogeneous charge compression ignition (HCCI) engine. In this work, to investigate the dual-injection HCCI combustion, a stochastic reactor model, based on a probability density function (PDF) approach, is utilized. A new wall-impingement sub-model is incorporated into the stochastic spray model for direct injection. The model is then validated against measurements for combustion parameters and emissions carried out on a four stroke HCCI engine. The initial results of our numerical simulation reveal that the two-stage injection is capable of triggering the charge ignition on account of locally rich fuel parcels under certain operating conditions, and consequently extending the HCCI operating range.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
X