Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental Study of Automotive Heat Shield Geometry with Natural Convection and Radiation Boundary Conditions

2001-05-14
2001-01-1746
Shielding a vehicle underbody is becoming a daunting task with increased exhaust temperatures due to emissions regulations and ever-increasing packaging constraints, which place components ever closer to exhaust systems. This experimental study was initiated to evaluate the two dimensional thermal effects of heat shield flange height and shield width in vehicle underbody idle conditions. The ultimate goal of this study is to develop a function to optimize the shape of heat shielding to achieve a specified floorpan temperature during vehicle idle conditions.
Technical Paper

The Measurement of Underhood and Underbody Velocities with the H-Meter

1999-03-01
1999-01-0234
Optimizing heat protection for underbody and underhood components, using non-CFD heat transfer CAE tools, requires the estimation of local convective heat transfer coefficients. This estimate, in turn requires knowledge of the local air velocity. Currently available methods for obtaining this velocity at several vehicle locations have been impractical and expensive for use in over-the-road testing. This paper presents the design, fabrication, and field testing results of a 26 mm diameter spherical transducer which measures the local heat transfer coefficient directly. The transducer contains three thermocouples and a heater. It is calibrated to correlate the coefficient with the air velocity. Drawing less than 0.1 A, a number of them can be powered by the vehicle battery with negligible drain. The data acquisition consists of sampling three thermocouples per spherical transducer.
Technical Paper

Automated Radiation Modeling for Vehicle Thermal Management

1995-02-01
950615
A fast, semi-automated method for visualizing the time-varying effects of radiative heat transfer, including obscuration and multiple reflections, is presented. Starting with a finite element surface description, an analyst assigns “groups” to a model by indicating which elements have the same material and surface properties. The elements within each group are combined into isothermal nodes. View factors are then calculated using a variant of the hemi-cube method. Transient nodal temperatures are calculated using an implicit solution to the finite difference equations derived from the thermal properties of each node and the radiation exchange between nodes.
Technical Paper

Optical Methods Aid for Visualization of Convective Heat Flow Patterns

1994-03-01
940503
The use of Shadowgraph and Schlieren optical systems is a simple method to determine flow patterns of heated air external to the vehicle at idle. In particular, the method can be used to visualize natural convective air flow patterns at the underbody to aid in heat shielding design. Moreover, air recirculation patterns around the front end of the vehicle can be visualized without the use of smoke. The optical equipment is described and recommendations proposed for setting up the equipment. A video tape of some results is also presented.
X