Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of a New Fleet Test Procedure to Investigate Emulsion Formation Tendencies of Motor Oils

1991-10-01
912398
There is concern over water-in-oil emulsion formation in passenger cars in the field. Crankcase pressure measurements in the ASTM Sequence IID rust test have been used to indicate possible emulsion formation tendencies of lubricants. This paper presents the development of a short duration emulsion fleet test procedure which demonstrates low car-to- car variability and correlates well with a previous fourmonth winter emulsion fleet test. Physical emulsion characteristics and used oil analyses are described. Evaluation of both Sequence IID reference oils and commercial oils in this field test reveals a lack of correlation between Sequence IID crankcase pressure results and field performance. The new procedure has been applied to investigate the impact of additive and base oil variations on the emulsion-forming tendencies of lubricants in the field. Base oil variables such as viscosity grade, composition, and volatility were evaluated.
Technical Paper

Investigations of Lubricant Sludge Formation in the Field: Development of an Effective New Fleet Test Technique

1991-02-01
910748
A new field test procedure for evaluation of the sludge formation tendencies of lubricants has been developed. The procedure has the benefits of short running time, reduced variability, and dramatic separation of API SF vs API SG oils. This paper discusses development of the operational procedure and evaluation of four lubricants, including commercial-type API SF and API SG oils as well as experimental future oils. Significantly improved sludge ratings were obtained with an experimental API SG oil. The sludge formation process was studied using infrared spectroscopy, TAN, dielectric measurements, viscosity, quasielastic light scattering particle size, and transmission electron microscopy techniques. These analyses show production of contaminants which form insoluble particles that build up and precipitate out of suspension as sludge. Certain drain analyses can be used as tools for predicting field sludge deposition time.
X