Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Do Driver Characteristics and Crash Conditions Modify the Effectiveness of Automatic Emergency Braking?

2021-04-06
2021-01-0874
Studies of automatic emergency braking (AEB) find that AEB-equipped vehicles are around half as likely to crash. This study examines whether driver characteristics and road and weather conditions modify this preventive effect of AEB. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). Using a case-control design, this study investigated the relationship of AEB presence with being a case vehicle in a system-relevant crash (the striking vehicle in front-to-rear crash; n=30,056) versus an AEB non-relevant control vehicle (the struck vehicle in a front-to-rear crash; n=62,820). The analysis was stratified by driver characteristics and by weather and road conditions. Logistic regression modeled the relationship, controlling for exposure (vehicle-days) and possible confounding factors.
Journal Article

Effectiveness of Advanced Driver Assistance Systems in Preventing System-Relevant Crashes

2021-04-06
2021-01-0869
This retrospective cohort study uses survival analysis to estimate the effectiveness of Toyota ADAS in helping prevent system-relevant crashes. Toyota production data were merged with police reported crash files from eight U.S. states for crash years 2015 up to 2019 by 17-digit vehicle identification number (VIN). System-relevant crash scenarios included: striking vehicle in front-to-rear, single vehicle run-off-the-road, same-direction sideswipe, head-on, and pedestrian struck. The study vehicle cohort included 11 Toyota/Lexus models, model years 2015 through 2018, sold in the eight study states. ADAS technologies studied included automatic emergency braking (AEB), lane departure warning (LDW), lane keeping assistance (LKA), blind spot monitoring (BSM) and pedestrian automatic emergency braking (PedAEB). Among the study cohort of 2,394,913 vehicles, police reported 308,490 crashes. The crude crash rate ratio (CRR) was 0.61 for AEB-equipped versus non-equipped vehicles.
Technical Paper

The Effect of Pretensioning and Age on Torso Rollout in Restrained Human Volunteers in Far-Side Lateral and Oblique Loading

2012-10-29
2012-22-0012
Far-side side impact loading of a seat belt restrained occupant has been shown to lead to torso slip out of the shoulder belt. A pretensioned seat belt may provide an effective countermeasure to torso rollout; however the effectiveness may vary with age due to increased flexibility of the pediatric spine compared to adults. To explore this effect, low-speed lateral (90°) and oblique (60°) sled tests were conducted using male human volunteers (20 subjects: 9-14 years old, 10 subjects: 18-30 years old), in which the crash pulse safety envelope was defined from an amusement park bumper-car impact. Each subject was restrained by a lap and shoulder belt system equipped with an electromechanical motorized seat belt retractor (EMSR) and photo-reflective targets were attached to a tight-fitting headpiece or adhered to the skin overlying key skeletal landmarks.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

A Comparison Of Hybrid III 5th Female Dummy Chest Responses In Controlled Sled Trials

2006-04-03
2006-01-0455
The responses of a Hybrid III 5th percentile dummy manufactured by Denton ATD were compared to a Hybrid III 5th percentile dummy manufactured by First Technology Safety Systems (FTSS). The dummies were seated on a HYGE sled set in a representative small production sedan configuration, simulating a 60 km/h offset deformable barrier (25 g pulse) and a 22 km/h crash (11 g pulse). Three shoulder retractor anchorage positions were used to place the shoulder belt at different locations on the dummy shoulder for each of the driver (left shoulder) and passenger (right shoulder) seating positions. Chest deflections measured from the rotary potentiometer are compared to deflections calculated from the accelerometers and are reported as a function of belt load and belt position. Repeatability is evaluated at low and high deflection levels.
X