Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles

1990-10-01
902118
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from Task 1 of an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. A hybrid M90 test vehicle was used to evaluate 18 unaged catalyst systems for formaldehyde, methanol, gasoline derived hydrocarbon, organic material hydrocarbon equivalent mass, carbon monoxide, and oxides of nitrogen emissions. The vehicle was operated on a chassis dynamometer using the FTP driving cycle. Catalyst systems evaluated included electrically-heated, manifold, close-coupled, and underbody catalysts, as well as combinations of the above.
X