Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

COMPARISON OF THE PRE-PROTOTYPE NHTSA ADVANCED DUMMY TO THE HYBRID III

1997-02-24
971141
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in twenty four frontal impact sled tests. Various time histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in light of their design differences. This has lead to some understanding about the differences and similarities between the NHTSA advanced dummy and the Hybrid III. In general, the chest as well as the head motion in the NHTSA advanced dummy are greater. The lumbar moments in the NHTSA advanced dummy are lower than that in the Hybrid III. The upper and lower spine segments in the NHTSA advanced dummy, generally rotate more than the spine of the Hybrid III.
Technical Paper

Technical Specifications of the SID-IIs Dummy

1995-11-01
952735
The SID-IIs is a small [s], second-generation [II] Side Impact Dummy [SID] which has the anthropometry of a 5th percentile adult female. It has a mass of 43.5 kg, a seated height of 790 mm, and over 100 available data channels. Based on the height and mass, this is equivalent to an average 12-13 year old adolescent. The state-of-the-art SID-IIs has special application in evaluating the performance of side impact airbags. The dummy has undergone prototype testing and will shortly be available for worldwide evaluation. This paper describes the technical details of the dummy, its biomechanical design targets, how well it met those targets, its validation requirements, and its instrumentation. The dummy is the product of a joint development agreement between the Occupant Safety Research Partnership (OSRP) of USCAR and First Technology Safety Systems.
Technical Paper

Evaluation of the BIOSID Pelvis

1993-03-01
930442
Biomechanically-based test surrogates are a valuable tool when used to evaluate side impact protection strategies, particularly when their responses are understood relative to dummy injury reference values. Test surrogates such as the BIOSID and EUROSID-1 side impact dummies have anatomically located pelvic load cells to help describe in varying degrees the pelvic load paths and help indicate the potential for pelvic injury. From a rigid body analysis, it was determined that the BIOSID pelvic structure can be separated into two rigid bodies due to load cell placement. A new configuration for the sacrum load cell is proposed for the BIOSID pelvis. Hammer impact tests were conducted on the BIOSID pelvis. The tests identified the load paths through the pelvis and indicated the relationship between the load cells. From rigid wall sled tests, the pelvis load cells were summed to identify the applied total external load.
X