Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
Technical Paper

Experimental Investigation on the Effect of Shell Design on Noise Quality and Performance of an Automotive Exhaust Muffler

2020-09-25
2020-28-0478
This research paper is dealing with development of a Hybrid Exhaust muffler with four different shell configurations (Internal design unaltered) and investigated the impact on noise performance and quality (perceived). Noise performance has been evaluated by measurement of Pass by Noise and near exhaust noise Level on a typical 16T -6-speeds transmission Truck. The experimental activity conducted based on DOE approach. From this study, it observed single shell with lower thickness have the poor NVH performance and perceived quality as well. Shell or booming noise is also observed with this configuration. Double shell with Ceramic blanket (throughout the length) sandwich configuration exhibited the best performance though this design is most expensive among the four mufflers.
Technical Paper

Experimental Investigation on the Effect of Two Different Multiple Injection Strategies on Emissions, Combustion Noise and Performances of an Automotive CRDI Engine

2016-04-05
2016-01-0871
An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
Technical Paper

Optimization of Multiple Injection Strategies to Improve BSFC Performance of a Common Rail Direct Injection Diesel Engine

2016-02-01
2016-28-0002
Present stringent emissions norms; global fossil fuel energy scenario and competitive automotive market has driven many researches on diesel engine combustion in both academic and industry level. This work is an effort to improve the fuel economy without compromising emissions level of typical six cylinders inline CRDI diesel engine using optimized multiple injection strategy. There was some unusual nature of BSFC (Brake specific fuel consumption) observed on such typical engine. Also, Torque curve was not up to the mark for better drivability. This engine is equipped with most familiar in cylinder NOx reduction device namely EGR and multiple injections. There were few experiments conducted on same engine to optimize the BSFC using different multi injection strategies in line to marginal change of injection timing with respect to crank angle. Total exercise was done following partial Design of Experiments (DOE). EGR % has kept unaltered.
Technical Paper

An Approach to Reduce the Product Variants through Design of Hybrid Muffler for Commercial Vehicle Application

2013-01-09
2013-26-0096
Exhaust noise of automobiles is one of the major sources of noise pollution. Un-muffled exhaust noise is quite higher than other noise sources of automobile. Therefore, the use of an exhaust muffler is prompted by the need of engine exhaust noise reduction. Insertion loss is the key metric to evaluate the performance of any muffler and it mainly depends upon proper selection of muffler volume which is proportional to engine swept volume. Another major performance evaluating metric is backpressure. Also, shape, size, weight, durability, manufacturability and cost are the secondary but important criteria of muffler selection. Presently, there are many variants of exhaust muffler, having different overall performances (i.e. insertion loss, backpressure, shape, size, weight, manufacturability and cost) used for different variants of commercial vehicle, though engine swept volume is same for all.
X