Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development, Performance Analysis and Optimization of Parallel Hydraulic Hybrid System for City Bus Application

2018-04-03
2018-01-0419
One of the key requisites for a sustained mobility development is to have an efficient public transport system. Fuel efficiency and emission control are extremely important in this respect. By the very nature of city driving, it is obvious that city traffic results in frequent vehicle start and stops; which involves huge waste of vehicle kinetic energy. Every time vehicle moving from idle, needs a bigger input of power and every time the brakes are applied, all energy built up disappears again, wasted in the brake pads as heat. An effort has been taken to recuperate vehicle kinetic energy, hydraulically during braking events and utilize it to assist the vehicle during acceleration. Hydraulic based hybrid vehicle working on the principle of regenerative braking is one of the most fuel-efficient technologies for city application. Parallel hydraulic hybrid vehicle has been developed and optimized for fuel efficiency gain at vehicle level.
Technical Paper

Development and Optimization of PCM Based Technology for Cooling Applications for Improvement of Fuel Efficiency in Commercial Vehicle

2017-03-28
2017-01-0150
In the current landscape of commercial vehicle industry, fuel economy is one of the major parameter for fleet owner’s profitability as well as greenhouse gasses emission. Less fuel efficiency results in more fuel consumption; use of conventional fuel in engines also makes environment polluted. The rapid growth in fuel prices has led to the demand for technologies that can improve the fuel efficiency of the vehicle. Phase change material (PCMs) for Thermal energy storage system (TES) is one of the specific technologies that not only can conserve energy to a large extent but also can reduce emission as well as the dependency on convention fuel. There is a great variety of PCMs that can be used for the extensive range of temperatures, making them attractive in a number of applications in automobiles.
Technical Paper

Finite Element Simulation and Validation of Fully Suspended Heavy Duty Commercial Vehicle (HCV) as per AIS029 Pendulum Impact Test

2015-09-29
2015-01-2873
The safety of the heavy duty commercial vehicle (HCV) occupants in an accident is an imperative task and should be considered during the design and development of cabins. The sufficient cabin survival space must be remained after the accident. The main aim of this study is to develop a Finite Element (FE) model of HCV cabin and validate to the test as per AIS029. The present study also includes the assessment of the energy absorption capabilities of the HCV cab during the pendulum impact test. Initially a detailed 3D FE model of a fully suspended HCV cabin was developed and then pendulum impact test simulation was carried out using LS-Dyna explicit solver. Simulation results were compared with the test results and were found in a great agreement in terms of survival space and overall deformation behavior. The load transfer path was described at the time of pendulum impact. The largest amount of impact energy was absorbed by the frontal region of the cabin.
Technical Paper

FEA Based Durability Evaluation of HD Tipper Chassis and Cab Through Correlated Transient and Fatigue Analysis

2011-01-19
2011-26-0013
Durability evaluation and Fatigue Life estimation for commercial vehicle Chassis and Cab is an important milestone during product design and development. Commonly used methods like endurance testing of vehicles on field, accelerated testing on four-posters or test tracks are time consuming and costly. On the other hand, virtual methods for durability evaluation give useful information early in design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate design changes early in product development cycle. Virtual testing methods commonly used in industry for durability evaluation of truck Chassis and Cab are combination of Multi-body Simulation (in software like Adams) and Fatigue Life estimation (in software like FEMFAT). These MBS models for truck are rigid or partly flexible and the simulation run-time increases drastically with increase in number of flexible parts in model.
Technical Paper

Performance Evaluation of Bus Structure in Rollover as Per ECE-R66 Using Validated Numerical Simulation

2009-01-21
2009-26-0002
A rollover event is one of the most crucial hazards for the safety of passengers and bus drivers. Deformation in bus body structure seriously threatens passengers' lives. European regulation “ECE-R66” is in force to prevent the catastrophic consequences of such rollover accidents from occurring and thereby ensuring passenger safety for buses and coaches. On similar lines, is bus code is also coming into force in India. These regulations establish the requirements for passenger survival space (residual space) after the rollover incident happens. According to said regulations, certification can be obtained either by full-scale vehicle testing, or by a validated numerical simulation. The numerical simulation for bus rollover can be carried out using the non-linear explicit dynamic code LS-DYNA and the deformed structure obtained from the simulation enables engineers to investigate whether there is any intrusion in the passenger survival space along the entire vehicle.
X