Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Particle and Gaseous Emissions from a Heavy-Duty SI Gas Engine over WHTC Driving Cycles

2019-12-19
2019-01-2222
The use of gaseous fuels in internal combustion engines is increasing, due to several reasons, first of all their low environmental impact, large availability and low cost. Nevertheless, the need to reduce emissions also from gas engines is an important aspect to be considered in order to comply with future engine emissions regulations. In this scenario, an extensive experimental activity was performed to fully characterize an heavy duty spark ignition engine, under development for Euro VI compliance and designed to run with gaseous fuels. Two separate sets of experiments were carried out, in order to analyze the engine behavior when burning LPG and CNG, respectively. To this aim, the engine was installed on a dynamic test bench, accurately instrumented to characterize the combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC), the new European driving homologation cycle.
Technical Paper

Emissive Behavior of a Heavy-Duty SI Gas Engine During WHTC

2019-09-09
2019-24-0121
In the arduous aim to reduce petroleum fuel consumption and toxic emissions, gaseous fuels can represent an alternative solution for heavy duty applications with respect to conventional liquid fuels. At the same time, the imposition of more stringent emission regulations in the transport sector, is a crucial aspect to be taken into account during the development of future gas engines. Aim of the present paper was to characterize a heavy duty spark ignition engine, under development for Euro VI compliance, with a particular focus on exhaust particulate emissions. In this sense, the engine was installed on a dynamic test bench, accurately instrumented to analyze combustion evolution, performance and exhaust pollutant emissions, along the World Harmonized Transient Cycle (WHTC).
Technical Paper

Tomography of a GDI Spray by PolyCO Based X-Ray Technique

2013-09-08
2013-24-0040
In this paper the investigation with X-ray Tomography on the structure of a gasoline spray from a GDI injector for automotive applications based on polycapillary optics is reported. Table-top experiment using a microfocus Cu Kα X-ray source for radiography and tomography has been used in combination with a polycapillary halflens and a CCD detector. The GDI injector is inserted in a high-pressure rotating device actuated with angular steps Δθ = 1° at the injection pressure of 8.0 MPa. The sinogram reconstruction of the jets by slices permits a 360° spray access to the fuel downstream the nozzle tip. A spatial distribution of the fuel is reported along the direction of six jets giving a measure of the droplet concentration in a circle of 16 mm2 below the nozzle tip at atmospheric backpressure and ambient temperature.
Technical Paper

Wall Impingement Process of a Multi-Hole GDI Spray: Experimental and Numerical Investigation

2012-04-16
2012-01-1266
The Direct Injection (DI) of gasoline in Spark Ignition (SI) engines is very attractive for fuel economy and performance improvements in spark ignition engines. Gasoline direct injection (GDI) offers the possibility of multi-mode operation, homogeneous and stratified charge, with benefits respect to conventional SI engines as higher compression ratio, zero pumping losses, control of the ignition process at very lean air-fuel mixture and good cold starting. The impingement of liquid fuel on the combustion chamber wall is generally one of the major drawbacks of GDI engines because its increasing of HC emissions and effects on the combustion process; in the wall guided engines an increasing attention is focusing on the fuel film deposits evolution and their role in the soot formation. Hence, the necessity of a detailed understanding of the spray-wall impingement process and its effects on the fuel distribution. The experimental results provide a fundamental data base for CFD predictions.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Technical Paper

The Effect of Methyl-Ester of Rapeseed Oil on Combustion and Emissions of DI Diesel Engines

1993-10-01
932801
The exhaust emissions produced by the combustion of methyl ester of rapeseed oil (biofuel) have been compared with the ones obtained using a commercial diesel fuel. The tests have been carried out on a Direct Injection Turbocharged (DITC) diesel engine according respectively to the ECE 15, to a non standard STOP and GO test cycle and to the European 13 MODE test procedure. Similar engines running at the same injection timing have been adopted in performing the transient and the steady tests. PAH emissions have been measured on transient cycles. The effects of injection timing and of Exhaust Gas Recirculation (EGR) on the emission in steady state tests has been evaluated too. In particular an exhaust oxydating catalyst has been employed in presence of EGR. The tests carried out indicate that, at the same injection timing, methyl ester promotes a rise in NOx emission, a decrease in HC and CO as well as a strong reduction of smoke.
X